Journal of Mathematical Biology

, Volume 55, Issue 1, pp 61–86 | Cite as

Graph-theoretic methods for the analysis of chemical and biochemical networks. I. Multistability and oscillations in ordinary differential equation models

Article

Abstract

A chemical mechanism is a model of a chemical reaction network consisting of a set of elementary reactions that express how molecules react with each other. In classical mass-action kinetics, a mechanism implies a set of ordinary differential equations (ODEs) which govern the time evolution of the concentrations. In this article, ODE models of chemical kinetics that have the potential for multiple positive equilibria or oscillations are studied. We begin by considering some methods of stability analysis based on the digraph of the Jacobian matrix. We then prove two theorems originally given by A. N. Ivanova which correlate the bifurcation structure of a mass-action model to the properties of a bipartite graph with nodes representing chemical species and reactions. We provide several examples of the application of these theorems.

Keywords

Chemical reactions Graph Multistability Oscillations 

Mathematics Subject Classification (2000)

34C23 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguda B.D. and Clarke B.L. (1987). Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase reaction. J. Chem. Phys. 87: 3461–3470 CrossRefGoogle Scholar
  2. 2.
    Angeli D. (2006). New analysis technique for multistability detection. IEE Proc. Syst. Biol. 153: 61–69 CrossRefGoogle Scholar
  3. 3.
    Asner B.A. (1970). On the total nonnegativity of the Hurwitz matrix. SIAM J. Appl. Math. 18: 407–414 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Berge C. (1962). The Theory of Graphs and its Applications. Wiley, New York MATHGoogle Scholar
  5. 5.
    Cinquin O. and Demongeot J. (2002). Roles of positive and negative feedback in biological systems. C. R. Biol. 325: 1085–1095 CrossRefGoogle Scholar
  6. 6.
    Cinquin O. and Demongeot J. (2002). Positive and negative feedback: Striking a balance between necessary antagonists. J. Theor. Biol. 216: 229–241 CrossRefMathSciNetGoogle Scholar
  7. 7.
    Clarke B.L. (1974). Graph theoretic approach to the stability analysis of steady state chemical reaction networks. J. Chem. Phys. 60: 1481–1492 CrossRefMathSciNetGoogle Scholar
  8. 8.
    Clarke B.L. (1974). Stability analysis of a model reaction network using graph theory. J. Chem. Phys. 60: 1493–1501 CrossRefMathSciNetGoogle Scholar
  9. 9.
    Clarke B.L. (1975). Theorems on chemical network stability. J. Chem. Phys. 62: 773–775 CrossRefMathSciNetGoogle Scholar
  10. 10.
    Clarke B.L. (1975). Stability of topologically similar chemical networks. J. Chem. Phys. 62: 3726–3738 CrossRefGoogle Scholar
  11. 11.
    Clarke B.L. (1980). Stability of complex reaction networks. Adv. Chem. Phys. 43: 1–217 CrossRefGoogle Scholar
  12. 12.
    Clarke B.L. and Jiang W. (1993). Method for deriving Hopf and saddle-node bifurcation hypersurfaces and application to a model of the Belousov-Zhabotinskii system. J. Chem. Phys. 99: 4464–4478 CrossRefGoogle Scholar
  13. 13.
    Cornish-Bowden A. and Hofmeyr J.-H.S. (2002). The role of stoichiometric analysis in studies of metabolism: an example. J. Theor. Biol. 216: 179–191 CrossRefMathSciNetGoogle Scholar
  14. 14.
    Craciun G. and Feinberg M. (2005). Multiple equilibria in complex chemical reaction networks: I. The injectivity property. SIAM J. Appl. Math. 65: 1526–1546 MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Craciun G. and Feinberg M. (2006). Multiple equilibria in complex chemical reaction networks: II. The species-reactions graph. SIAM J. Appl. Math. 66: 1321–1338 MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Craciun G. and Feinberg M. (2006). Multiple equilibria in complex chemical reaction networks: extensions to entrapped species models. IEE Proc. Syst. Biol. 153: 179–186 CrossRefGoogle Scholar
  17. 17.
    Craciun G., Tang Y. and Feinberg M. (2006). Understanding bistability in complex enzyme-driven reaction networks. Proc. Natl. Acad. Sci. USA 103: 8697–8702 CrossRefGoogle Scholar
  18. 18.
    Eiswirth M., Freund A. and Ross J. (1991). Mechanistic classification of chemical oscillators and the role of species. Adv. Chem. Phys. 80: 127–199 CrossRefGoogle Scholar
  19. 19.
    Elowitz M. and Leibler S. (2000). A synthetic oscillatory network of transcriptional regulators. Nature 403: 335–338 CrossRefGoogle Scholar
  20. 20.
    Engel G. and Schneider H. (1976). The Hadamard–Fisher inequality for a class of matrices defined by eigenvalue monotonicity. Linear Multilinear Algebra 4: 155–176 MathSciNetGoogle Scholar
  21. 21.
    Ermakov G.L. (2003). A theoretical graph method for search and analysis of critical phenomena in biochemical systems. I. Graphical rules for detecting oscillators. Biochemistry (Moscow) 68: 1109–1120 CrossRefGoogle Scholar
  22. 22.
    Ermakov G.L. (2003). A theoretical graph method for search and analysis of critical phenomena in biochemical systems. II. Kinetic models of biochemical oscillators including two and three substances. Biochemistry (Moscow) 68: 1121–1131 CrossRefGoogle Scholar
  23. 23.
    Ermakov G.L. and Goldstein B.N. (2002). Simplest kinetic schemes for biochemical oscillators. Biochemistry (Moscow) 67: 473–484 CrossRefGoogle Scholar
  24. 24.
    Escher C. (1979). Models of chemical reaction systems with exactly evaluable limit cycle oscillations. Z. Phys. B 35: 351–361 CrossRefMathSciNetGoogle Scholar
  25. 25.
    Escher C. (1979). On chemical reaction systems with exactly evaluable limit cycle oscillations. J. Chem. Phys. 70: 4435–4436 CrossRefGoogle Scholar
  26. 26.
    Feinberg M. (1972). Complex balancing in general kinetic systems. Arch. Ration. Mech. Anal. 49: 187–194 CrossRefMathSciNetGoogle Scholar
  27. 27.
    Feinberg M. (1987). Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems. Chem. Eng. Sci. 42: 2229–2268 CrossRefGoogle Scholar
  28. 28.
    Feinberg M. (1995). The existence and uniqueness of steady states for a class of chemical reaction networks. Arch. Ration. Mech. Anal. 132: 311–370 MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Feinberg M. (1995). Multiple steady states for chemical reaction networks of deficiency one. Arch. Ration. Mech. Anal. 132: 371–406 MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Gantmakher F.R. (1959). Applications of the Theory of Matrices. Interscience Publishing, New York Google Scholar
  31. 31.
    Gatermann K., Eiswirth M. and Sensse A. (2005). Toric ideals and graph theory to analyze Hopf bifurcations in mass action systems. J. Symb. Comp. 40: 1361–1382 CrossRefMathSciNetGoogle Scholar
  32. 32.
    Goldbeter A. (1995). A model for circadian oscillations in the Drosophila period protein (PER). Proc. R. Soc. Lond. B 261: 319–324 CrossRefGoogle Scholar
  33. 33.
    Goldstein B. (2007). Switching mechanism for branched biochemical fluxes: graph-theoretical analysis. Biophys. Chem. 125: 314–319 CrossRefGoogle Scholar
  34. 34.
    Goldstein B.N., Ermakov G., Centelles J.J., Westerhoff H.V. and Cascante M. (2004). What makes biochemical networks tick? a graphical tool for the identification of oscillophores. Eur. J. Biochem. 271: 3877–3887 CrossRefGoogle Scholar
  35. 35.
    Goldstein B.N. and Ivanova A.N. (1987). Hormonal regulation of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase: Kinetic models. FEBS Lett. 217: 212–215 CrossRefGoogle Scholar
  36. 36.
    Goldstein B.N. and Maevsky A.A. (2002). Critical switch of the metabolic fluxes by phosphofructo-2-kinase:fructose-2,6-bisphosphatase. A kinetic model. FEBS Lett. 532: 295–299 CrossRefGoogle Scholar
  37. 37.
    Goldstein B.N. and Selivanov V.A. (1990). Graph-theoretic approach to metabolic pathways. Biomed. Biochim. Acta 49: 645–650 Google Scholar
  38. 38.
    Gray P. and Scott S.K. (1984). Autocatalytic reactions in the isothermal continuous stirred tank reactor: oscillations and instabilities in the system A + 2B→ 3B; B→C. Chem. Eng. Sci. 39: 1087–1097 CrossRefGoogle Scholar
  39. 39.
    Guckenheimer J., Myers M. and Sturmfels B. (1997). Computing Hopf bifurcation I. SIAM J. Numer. Anal. 34: 1–21 MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Harary F. (1969). Graph Theory. Addison-Wesley, Reading Google Scholar
  41. 41.
    Holme P., Huss M. and Jeong H. (2003). Subnetwork hierarchies of biochemical pathways. Bioinformatics 19: 532–538 CrossRefGoogle Scholar
  42. 42.
    Horn F. (1972). Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Ration. Mech. Anal. 49: 172–186 CrossRefMathSciNetGoogle Scholar
  43. 43.
    Horn F. and Jackson R. (1972). General mass action kinetics. Arch. Ration. Mech. Anal. 47: 81–116 CrossRefMathSciNetGoogle Scholar
  44. 44.
    Hunt K.L.C., Hunt P.M. and Ross J. (1990). Nonlinear dynamics and thermodynamics of chemical reactions far from equilibrium. Annu. Rev. Phys. Chem. 41: 409–439 CrossRefGoogle Scholar
  45. 45.
    Ivanova A.N. (1979). Conditions for the uniqueness of the stationary states of kinetic systems, connected with the structures of their reaction mechanisms. 1. Kinet. Katal. 20: 1019–1023 Google Scholar
  46. 46.
    Ivanova A.N. and Tarnopolskii B.L. (1979). One approach to the determination of a number of qualitative features in the behavior of kinetic systems and realization of this approach in a computer (critical conditions, autooscillations). Kinet. Katal. 20: 1541–1548 Google Scholar
  47. 47.
    Jeffries C. (1974). Qualitative stability and digraphs in model ecosystems. Ecology 55: 1415–1419 CrossRefGoogle Scholar
  48. 48.
    Jeffries C., Klee V. and Driessche P. (1977). When is a matrix sign stable?. Can. J. Math. 29: 315–326 MATHGoogle Scholar
  49. 49.
    Klonowski W. (1983). Simplifying principles for chemical and enzyme reaction kinetics. Biophys. Chem. 18: 73–87 CrossRefGoogle Scholar
  50. 50.
    Krischer K., Eiswirth M. and Ertl G. (1992). Oscillatory CO oxidation on Pt(110): modeling of temporal self-organization. J. Chem. Phys. 96: 9161–9172 CrossRefGoogle Scholar
  51. 51.
    Kuznetsov Y.A. (1998). Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York Google Scholar
  52. 52.
    Lancaster P. and Tismenetsky M. (1985). The Theory of Matrices. Academic, Orlando MATHGoogle Scholar
  53. 53.
    Markevich N., Hoek J. and Kholodenko B. (2004). Signaling switches and bistability arising from multiple phosphorylation in protein kinase cascades. J. Cell Biol. 164: 353–359 CrossRefGoogle Scholar
  54. 54.
    Maybee J., Olesky D., Wiener G. and Driessche P. (1989). Matrices, digraphs and determinants. SIAM J. Matrix Anal. Appl. 10: 500–519 MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Maybee J. and Quirk J. (1969). Qualitative problems in matrix theory. SIAM Rev. 11: 30–51 MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Mincheva, M., Roussel, M.R.: Graph-theoretic methods for the analysis of chemical and biochemical networks. II. Oscillations in networks with delays. doi:10.1007/s00285-007-0098-2Google Scholar
  57. 57.
    Perelson A. and Wallwork D. (1977). The arbitrary dynamic behavior of open chemical reaction systems. J. Chem. Phys. 66: 4390–4394 CrossRefGoogle Scholar
  58. 58.
    Rockafellar R.T. (1970). Convex Analysis. Princeton University Press, Princeton MATHGoogle Scholar
  59. 59.
    Sauro H.M. and Kholodenko B.N. (2004). Quantitative analysis of signaling networks. Prog. Biophys. Mol. Biol. 86: 5–43 CrossRefGoogle Scholar
  60. 60.
    Schilling C.H., Schuster S., Palsson B.O. and Heinrich R. (1999). Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol. Prog. 15: 296–303 CrossRefGoogle Scholar
  61. 61.
    Schlosser P.M. and Feinberg M. (1994). A theory of multiple steady states in isothermal homogeneous CFSTRs with many reactions. Chem. Eng. Sci. 49: 1749–1767 CrossRefGoogle Scholar
  62. 62.
    Schuster S. and Höfer T. (1991). Determining all extreme semi-positive conservation relations in chemical reaction systems: a test criterion for conservativity. J. Chem. Soc. Faraday Trans. 87: 2561–2566 CrossRefGoogle Scholar
  63. 63.
    Sel’kov E.E. (1968). Self-oscillations in glycolysis. 1. A simple model. Eur. J. Biochem. 4: 79–86 CrossRefGoogle Scholar
  64. 64.
    Slepchenko B.M. and Terasaki M. (2003). Cyclin aggregation and robustness of bio-switching. Mol. Biol. Cell 14: 4695–4706 CrossRefGoogle Scholar
  65. 65.
    Soulé C. (2003). Graphic requirements for multistationarity. ComPlexUs 1: 123–133 CrossRefGoogle Scholar
  66. 66.
    Thomas R. and Kaufman M. (2001). Multistationarity, the basis of cell differentiation and memory. I. Structural conditions of multistationarity and other nontrivial behavior. Chaos 11: 170–179 CrossRefMathSciNetGoogle Scholar
  67. 67.
    Tyson J.J. (1975). Classification of instabilities in chemical reaction systems. J. Chem. Phys. 62: 1010–1015 CrossRefGoogle Scholar
  68. 68.
    Tyson J.J., Chen K. and Novak B. (2001). Network dynamics and cell physiology. Nat. Rev. Mol. Cell Biol. 2: 908–916 CrossRefGoogle Scholar
  69. 69.
    Vasilev V., Volpert A. and Hudyaev S. (1973). A method of quasistationary concentrations for the equations of chemical kinetics. Zh. Vychysl. Mat. Fiz. 13: 683–697 Google Scholar
  70. 70.
    Volpert, A., Hudyaev, S.: Analyses in Classes of Discontinuous Functions and Equations of Mathematical Physics, Chap. 12. Martinus Nijhoff, Dordrecht (1985)Google Scholar
  71. 71.
    Volpert, A., Ivanova, A.: Mathematical models in chemical kinetics. In: Mathematical Modeling (Russian), Nauka, Moscow, pp. 57–102 (1987)Google Scholar
  72. 72.
    Walker D.A. (1992). Concerning oscillations. Photosynth. Res. 34: 387–395 CrossRefGoogle Scholar
  73. 73.
    Walter W. (1998). Ordinary Differential Equations. Springer Verlag, New York MATHGoogle Scholar
  74. 74.
    Wilhelm T. and Heinrich R. (1995). Smallest chemical reaction system with Hopf bifurcation. J. Math. Chem. 17: 1–14 MATHCrossRefMathSciNetGoogle Scholar
  75. 75.
    Zeigarnik A.V. and Temkin O.N. (1994). A graph-theoretical model of complex reaction mechanisms: bipartite graphs and the stoichiometry of complex reactions. Kinet. Catal. 35: 647–655 Google Scholar
  76. 76.
    Zevedei-Oancea I. and Schuster S. (2005). A theoretical framework for detecting signal transfer routes in signalling networks. Comput. Chem. Eng. 29: 597–617 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of LethbridgeLethbridgeCanada
  2. 2.Department of MathematicsUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations