Skip to main content
Log in

A mesoscopic model for helical bacterial flagella

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Filaments of bacterial flagella are perfect tubular stackings polymerized out of just one kind of building block: the flagellin protein. Surprisingly, they do not form straight tubes, but exhibit a symmetry-breaking coiling into helical shapes which is essential for their biological function as cell ``propeller''. The co-existence of two conformational states for flagellin within the filament is believed to be responsible for the helical shapes by producing local misfit which results in curvature and twist. In this paper, we present a coarse-grained description with an elastic energy functional for the filament derived from its microscopic structure. By minimising this functional we can answer the question of spatial distribution of flagellin states which is crucial for the observed coupling of curvature and twist. Our approach extends a classical theory of Calladine, which had to assume this spatial distribution from the outset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asakura, S.: Polymerization of flagellin and polymorphism of flagella. Adv. Biophys. 1, 99–155 (1970)

    Google Scholar 

  2. Berg, H.: The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72, 19–54 (2003)

    Article  Google Scholar 

  3. Bishop, R.: There is more than one way to frame a curve. Am. Math. Monthly 82, 246 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  4. Braides, A.: Γ-convegence for beginners. Oxford UP, 2002

  5. Calladine, C.: Design requirements for the construction of bacterial flagella. J. Theor. Biol. 57, 469–489 (1976)

    Article  Google Scholar 

  6. Calladine, C.: Change of waveform in bacterial flagella: the role of mechanics at the molecular level. J. Molec. Biol. 118, 457–479 (1978)

    Article  Google Scholar 

  7. Calladine, C.: Construction of bacterial flagellar filaments, and aspects of their conversion to different helical forms. In: W. Amos, J. Duckett, (Eds.), Prokaryotic and eukaryotic flagella, Proc. 35th Symp. of Soc. Exper. Biol. pp. 33–51. CUP (1982)

  8. Dacorogna, B.: Direct methods in the calculus of variations. Springer, 1989

  9. Evans, L.: Partial differential equations. AMS, 1998

  10. Goldstein, R., Goriely, A., Huber, G., Wolgemuth, C.: Bistable helices. Phys. Rev. Lett. 84, 1631–1634 (2000)

    Article  Google Scholar 

  11. Hasegawa, K., Yamashita, I., Namba, K.: Quasi- and nonequivalence in the structure of bacterial flagellar filament. Biophys. J. 74, 569–575 (1998)

    Article  Google Scholar 

  12. Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer, 2001

  13. Ireta, J., Neugebauer, J., Scheffler, M., Rojo, A., Galván, M.: Structural transitions in the polyalanine α-helix under uniaxial strain. Available online: w3.rz-berlin.mpg.de/~ireta/member/highlights/pes_helix-v5.pdf

  14. Kim, M., Bird, J., Parys, A., Breuer, K., Powers, T.: A macroscopic scale model of bacterial flagellar bundling. PNAS 100 (23), 15,481–15,485 (2003)

    Google Scholar 

  15. Namba, K., Vonderviszt, F.: Molecular architecture of bacterial flagellum. Quart. Rev. of Biophys. 30 (1), 1–65 (1997)

    Article  Google Scholar 

  16. Samatey, F., Imada, K., Nagashima, S., Vonderviszt, F., Kumasaka, T., Yamamoto, M., Namba, K.: Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410, 331–337 (2001)

    Article  Google Scholar 

  17. Srigiriraju, S., Powers, T.: Continuum model for polymorphism of bacterial flagella. Phys. Rev. Lett. 94, 248,101 (2005)

    Article  Google Scholar 

  18. Turner, L., Ryu, W., Berg, H.: Real-time imaging of fluorescent flagellar filaments. J. of Bacteriol. 182 (10), 2793–2801 (2000)

    Article  Google Scholar 

  19. Yamashita, I., Hasegawa, K., Suzuki, H., Vonderviszt, F., Mimori-Kiyosue, Y., Namba, K.: Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction. Nature Struct. Bio. 5 (2), 125–132 (1998)

    Article  Google Scholar 

  20. Yonekura, K., Maki-Yonekura, S., Namba, K.: Complete atomic model of the bacterial flagellar filament by electron cyromicroscopy. Nature 424, 643–650 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Friedrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, B. A mesoscopic model for helical bacterial flagella. J. Math. Biol. 53, 162–178 (2006). https://doi.org/10.1007/s00285-006-0380-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-006-0380-8

Mathematics Subject Classification (2000)

Keywords or phrases

Navigation