Skip to main content
Log in

A theory of Fisher's reproductive value

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript


The formal Darwinism project aims to provide a mathematically rigorous basis for optimisation thinking in relation to natural selection. This paper deals with the situation in which individuals in a population belong to classes, such as sexes, or size and/or age classes. Fisher introduced the concept of reproductive value into biology to help analyse evolutionary processes of populations divided into classes. Here a rigorously defined and very general structure justifies, and shows the unity of concept behind, Fisher's uses of reproductive value as measuring the significance for evolutionary processes of (i) an individual and (ii) a class; (iii) recursively, as calculable for a parent as a sum of its shares in the reproductive values of its offspring; and (iv) as an evolutionary maximand under natural selection. The maximand is the same for all parental classes, and is a weighted sum of offspring numbers, which implies that a tradeoff in one aspect of the phenotype can legitimately be studied separately from other aspects. The Price equation, measure theory, Markov theory and positive operators contribute to the framework, which is then applied to a number of examples, including a new and fully rigorous version of Fisher's sex ratio argument. Classes may be discrete (e.g. sex), continuous (e.g. weight at fledging) or multidimensional with discrete and continuous components (e.g. sex and weight at fledging and adult tarsus length).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Anderson, E.J., Nash, P.: Linear programming in infinite-dimensional spaces: theory and applications. Wiley, Chichester, 1987

  2. Ash, R.B., Doleans-Dade, C.A.: Probability and measure theory. Academic Press, San Diego, CA 2000

  3. Bishop, D.T., Cannings, C.: A generalized war of attrition. J. Theor. Biol. 70, 85–125 (1978)

    Article  MathSciNet  Google Scholar 

  4. Boomsma, J.J., Grafen, A.: Colony-level sex ratio selection in the eusocial Hymenoptera. J. Evol. Biol. 4, 383–407 (1991)

    Article  Google Scholar 

  5. Caswell, H.: Matrix population models: construction, analysis and interpretation. Sinauer, Sunderland, Massachusetts, 1989

  6. Charlesworth, B.: Evolution in age-structured populations. Cambridge University Press, 1994

  7. Darwin, C.R.: The descent of man and selection in relation to sex. John Murray, London, 1871

  8. Easterling, M.R., Ellner, S.P., Dixon, P.M.: Size-specific sensitivity: Applying a new structured population model. Ecology 81, 694–708 (2000)

    Article  Google Scholar 

  9. Edwards, A.W.F.: Natural selection and the sex ratio: Fisher's sources. Am. Natur. 151, 564–569 (1998)

    Article  Google Scholar 

  10. Edwards, A.W.F.: Carl Düsing on the regulation of the sex-ratio. Theor. Population Biol. 58, 255–257 (2000)

    Article  Google Scholar 

  11. Fisher, R.A.: The genetical theory of natural selection. Oxford University Press. (OUP published in 1999 a variorum edition of the 1930 and 1958 editions) 1930

  12. Fretwell, S.: Populations in a seasonal environment. Princeton University Press, 1972

  13. Grafen, A.: Split sex ratios and the evolutionary origins of eusociality. J. Theor. Biol. 122, 95–121 (1986)

    Google Scholar 

  14. Grafen, A.: The logic of divisively asymmetric contests: respect for ownership and the desperado effect. Animal Behaviour 35, 462–467 (1987)

    Article  Google Scholar 

  15. Grafen, A.: Sexual selection unhandicapped by the Fisher process. J. Theor. Biol. 144, 475–518 (1990)

    Google Scholar 

  16. Grafen, A.: Fertility and labour supply in Femina economica. J. Theor. Biol. 194, 429–455 (1998)

    Article  Google Scholar 

  17. Grafen, A.: Formal Darwinism, the individual-as-maximising-agent analogy, and bet-hedging. Proceedings of the Royal Society, Series B 266, 799–803 (1999)

    Article  Google Scholar 

  18. Grafen, A.: Developments of Price's equation and natural selection under uncertainty. Proceedings of the Royal Society, Series B 267, 1223–1227 (2000)

    Article  Google Scholar 

  19. Grafen, A.: A first formal link between the Price equation and an optimisation program. J. Theor. Biol. 217, 75–91 (2002)

    Article  MathSciNet  Google Scholar 

  20. Grafen, A.: Optimisation of inclusive fitness. J. Theor. Biol. 238, 541–563 (2006)

    Article  MathSciNet  Google Scholar 

  21. Hamilton, W.D.: The genetical evolution of social behaviour. J. Theor. Biol. 7, 1–52 (1964)

    Article  Google Scholar 

  22. Hamilton, W.D.: Selfish and spiteful behaviour in an evolutionary model. Nature 228, 1218–1220 (1970)

    Article  Google Scholar 

  23. Kanwal, R.P.: Generalized functions: theory and technique. Academic Press. Volume 171 of Mathematics in Science and Engineering, 1983

  24. Krasnosel'skii, M.: Positive solutions of operator equations. P. Noordhoff Ltd, Groningen, The Netherlands. Translated from the Russian by Richard. E. Flaherty, 1964

  25. Leimar, O.: Life-history analysis of the Trivers and Willard sex-ratio problem. Behaviour Ecology 7, 316–325 (1996)

    Google Scholar 

  26. Luenberger, D.G.: Optimization by vector space methods. Wiley, New York 1997

  27. Moran, P.A.P.: On the nonexistence of adaptive topographies. Annals of Human Genetics 27, 383–393 (1964)

    Article  MATH  Google Scholar 

  28. Phelps, R.R.: Lectures on Choquet's theorem. Springer, New York, USA 2001

  29. Price, G.R.: Selection and covariance. Nature 227, 520–521 (1970)

    Article  Google Scholar 

  30. Price, G.R.: Extension of covariance selection mathematics. Ann. Human Genetics 35, 485–490 (1972)

    Article  MATH  Google Scholar 

  31. Rosenblatt, M.: Markov processes: structure and asymptotic behavior. Springer-Verlag, New York, 1971

  32. Schechter, E.: Handbook of analysis and its foundations. Academic Press, 1997

  33. Seger, J., Stubblefield, J.W.: Models of sex ratio evolution. In: Hardy, I.C.W. (ed) Sex ratios: concepts and research methods. Chap. 1. Cambridge University Press, Cambridge, pp. 2–25 (2002)

  34. Taylor, P.D.: Allele-frequency change in a class-structured population. Am. Natur. 135, 95–106 (1990)

    Article  Google Scholar 

  35. Taylor, P.D.: Inclusive fitness arguments in genetic models of behaviour. J. Math. Biol. 34, 654–674 (1996)

    MATH  Google Scholar 

  36. Trivers, R.L., Willard, D.E.: Natural selection of parental ability to vary the sex of offspring. Science 179, 90–92 (1973)

    Google Scholar 

  37. Vilenkin, N.Y., Gorin, E. A., Kostyuchenko, A. G., Krasnosel'skii, M. A., Krein, S.G. (Editor), Maslov, V.P., Mityagin, B.S., Petunin, Y.I., Rutitski, Y.B., Sobolev, V.I., Stetsenko, V.Y., Faddeev, L.D., Tsitlanadze, E.S. Functional analysis. Groningen: Wolters-Noordhoff. Translated from the Russian by Richard E. Flaherty, 1972

  38. Williams, K., Simon, C.: The ecology, behavior, and evolution of periodical cicadas. Ann. Rev. Entomol. 40, 269–295 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alan Grafen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grafen, A. A theory of Fisher's reproductive value. J. Math. Biol. 53, 15–60 (2006).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:

Key words or phrases