Skip to main content

Mutation, selection, and ancestry in branching models: a variational approach

Abstract

We consider the evolution of populations under the joint action of mutation and differential reproduction, or selection. The population is modelled as a finite-type Markov branching process in continuous time, and the associated genealogical tree is viewed both in the forward and the backward direction of time. The stationary type distribution of the reversed process, the so-called ancestral distribution, turns out as a key for the study of mutation–selection balance. This balance can be expressed in the form of a variational principle that quantifies the respective roles of reproduction and mutation for any possible type distribution. It shows that the mean growth rate of the population results from a competition for a maximal long-term growth rate, as given by the difference between the current mean reproduction rate, and an asymptotic decay rate related to the mutation process; this tradeoff is won by the ancestral distribution. We then focus on the case when the type is determined by a sequence of letters (like nucleotides or matches/mismatches relative to a reference sequence), and we ask how much of the above competition can still be seen by observing only the letter composition (as given by the frequencies of the various letters within the sequence). If mutation and reproduction rates can be approximated in a smooth way, the fitness of letter compositions resulting from the interplay of reproduction and mutation is determined in the limit as the number of sequence sites tends to infinity. Our main application is the quasispecies model of sequence evolution with mutation coupled to reproduction but independent across sites, and a fitness function that is invariant under permutation of sites. In this model, the fitness of letter compositions is worked out explicitly. In certain cases, their competition leads to a phase transition.

This is a preview of subscription content, access via your institution.

References

  1. Akin E. (1979): The Geometry of Population Genetics. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  2. Athreya K.B., Ney P.E. (1972): Branching Processes. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  3. Baake E., Baake M., Bovier A., Klein M. (2005): An asymptotic maximum principle for essentially nonlinear evolution models. J. Math. Biol. 50, 83–114; ArXiv:q-bio.PE/0311020

    Article  MathSciNet  Google Scholar 

  4. Baake E., Wagner H. (2001): Mutation–selection models solved exactly with methods from statistical mechanics. Genet. Res. 78, 93–117

    Article  Google Scholar 

  5. Bürger R. (2000): The Mathematical Theory of Selection, Recombination, and Mutation. Wiley, Chichester

    MATH  Google Scholar 

  6. Crow J. F., Kimura M. (1970): An Introduction to Population Genetics Theory. Harper & Row, New York

    Google Scholar 

  7. Dembo A., Zeitouni O. (1998): Large Deviations: Techniques and Applications. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  8. Edwards A. (2002): The fundamental theorem of natural selection. Theor. Pop. Biol. 61, 335–337

    Article  Google Scholar 

  9. Eigen M. (1971): Selforganization of matter and the evolution of biological macromolecules. Naturwiss. 58, 465–523

    Article  Google Scholar 

  10. Eigen M., McCaskill J., Schuster P. (1989): The molecular quasi-species. Adv. Chem. Phys. 75, 149–263

    Google Scholar 

  11. Ewens W. (2004): Mathematical Population Genetics, 2nd edn. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  12. Ewens W., Grant G. (2005): Statistical Methods in Bioinformatics, 2nd edn. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  13. Garske, T.: Error thresholds in a mutation-selection model with Hopfield-type fitness. Bull. Math. Biol. (in press) arXiv:q-bio.PE/0505056. DOI 10.1007/s11538-006-9072-1

  14. Garske T., Grimm U. (2004): A maximum principle for the mutation-selection equilibrium of nucleotide sequences. Bull. Math. Biol. 66, 397–421; arXiv:physics/0303053v2

    Article  MathSciNet  Google Scholar 

  15. Georgii H.-O., Baake E. (2003): Multitype branching processes: the ancestral types of typical individuals. Adv. Appl. Prob. 35, 1090–1110;arXiv:math.PR/0302049

    Article  MathSciNet  Google Scholar 

  16. Gerland U., Hwa T. (2002): On the selection and evolution of regulatory DNA motifs. J. Mol. Evol. 55, 386–400

    Article  Google Scholar 

  17. Hein J., Schierup M., Wiuf C. (2005): Gene genealogies, variation and evolution : a primer in coalescent theory. Oxford University Press, Oxford

    MATH  Google Scholar 

  18. Hermisson J., Redner O., Wagner H., Baake E. (2002): Mutation–selection balance: Ancestry, load, and maximum principle. Theor. Pop. Biol. 62, 9–46; arXiv:cond-mat/0202432

    Article  Google Scholar 

  19. Hofbauer J. (1985): The selection mutation equation. J. Math. Biol. 23, 41–53

    MathSciNet  Google Scholar 

  20. den Hollander F. (2000). Large Deviations. AMS, Providence, RI

    MATH  Google Scholar 

  21. Jagers P., Nerman O. (1984): The stable doubly infinite pedigree process of supercritical branching populations. Z für Wahrscheinlichkeitstheorie und verwandte Gebiete 65, 445–460

    Article  MathSciNet  Google Scholar 

  22. Jagers P. (1989): General branching processes as Markov fields. Stoch. Proc. Appl. 32, 183–242

    Article  MathSciNet  Google Scholar 

  23. Jagers P. (1992): Stabilities and instabilities in population dynamics. J. Appl. Prob. 29, 770–780

    Article  MathSciNet  Google Scholar 

  24. Kamp C. (2003): A quasispecies approach to viral evolution in the context of an adaptive immune system. Microbes Infect. 5, 1397–1405

    Article  Google Scholar 

  25. Karlin K.S., Taylor H.M. (1975): A first course in stochastic processes, 2nd edn. Academic Press, San Diego

    MATH  Google Scholar 

  26. Kemeny J.G., Snell J.L. (1981): Finite Markov Chains. Springer, Berlin Heidelberg New York

    Google Scholar 

  27. Kesten H., Stigum B.P. (1966): A limit theorem for multidimensional Galton-Watson processes. Ann. Math. Statist. 37, 1211–1233

    MathSciNet  Google Scholar 

  28. Kurtz T., Lyons R., Pemantle R., Peres Y. (1997): A conceptual proof of the Kesten-Stigum theorem for multi-type branching processes. In: Athreya K.B., Jagers P (eds) Classical and Modern Branching Processes. pp. 181–185, Springer, New York

    Google Scholar 

  29. Lindvall T. (1992): Lectures on the Coupling Method. Wiley, New York

    MATH  Google Scholar 

  30. Lyons R., Pemantle R., Peres Y. (1995): Conceptual proofs of LlogL criteria for mean behaviour of branching processes. Ann. Prob. 23, 1125–1138

    MathSciNet  Google Scholar 

  31. Mitrinovic D. (1970): Analytic inequalities. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  32. Rockafellar R.T. (1970): Convex Analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  33. Stannat W. (2004): On the convergence of genetic algorithms—a variational approach. Probab. Theory Relat. Fields 129, 113–132

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Baake.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baake, E., Georgii, HO. Mutation, selection, and ancestry in branching models: a variational approach. J. Math. Biol. 54, 257–303 (2007). https://doi.org/10.1007/s00285-006-0039-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-006-0039-5

Keywords

  • Mutation–selection models
  • Branching processes
  • Quasispecies model
  • Variational analysis
  • Large deviations

Mathematics Subject Classification (2000)

  • 92D15
  • 60J80
  • 60F10
  • 90C46
  • 15A18