Skip to main content
Log in

Kolmogorov’s Differential Equations and Positive Semigroups on First Moment Sequence Spaces

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

An Erratum to this article was published on 08 January 2008

Abstract

Spatially implicit metapopulation models with discrete patch-size structure and host-macroparasite models which distinguish hosts by their parasite loads lead to infinite systems of ordinary differential equations. In several papers, a this-related theory will be developed in sufficient generality to cover these applications. In this paper the linear foundations are laid. They are of own interest as they apply to continuous-time population growth processes (Markov chains). Conditions are derived that the solutions of an infinite linear system of differential equations, known as Kolmogorov’s differential equations, induce a C 0-semigroup on an appropriate sequence space allowing for first moments. We derive estimates for the growth bound and the essential growth bound and study the asymptotic behavior. Our results will be illustrated for birth and death processes with immigration and catastrophes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen L.J.S. (2003) An introduction to stochastic processes with applications to biology. Pearson Education, Upper Saddle River

    Google Scholar 

  2. Arrigoni F. (2003) Deterministic approximation of a stochastic metapopulation model. Adv Appl Prob 35, 691–720

    Article  MATH  MathSciNet  Google Scholar 

  3. Banasiak J., Arlotti L. (2006) Perturbations of positive semigroups with applications. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  4. Barbour A.D., Pugliese A. (2005) Asymptotic behaviour of a metapopulation model. Ann Appl Prob 15, 1306–1338

    Article  MATH  MathSciNet  Google Scholar 

  5. Born E., Dietz K. (1989) Parasite population dynamics within a dynamic host population. Prob Theor Rel Fields 83, 67–85

    Article  MATH  MathSciNet  Google Scholar 

  6. Casagrandi R., Gatto M. (2002) A persistence criterion for metapopulations. Theor Pop Biol 61, 115–125

    Article  MATH  Google Scholar 

  7. Clément, Ph., Heijmans, H.J.A.M. Angenent, S., van Duijn, C.J., de Pagter, B. One-parameter semigroups. North-Holland, Amsterdam 1987

  8. Clinchy M.D., Haydon D.T., Smith A.T. (2002) Pattern does not equal process: what does patch occupancy really tell us about metapopulation dynamics. Am Nat 159, 351–362

    Article  Google Scholar 

  9. Deimling K. (1985) Nonlinear functional analysis. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  10. Dietz, K. Overall population patterns in the transmission cycle of infectious disease agents. In: Anderson, R.M., May, R.M. (eds.) Population biology of infectious diseases. pp. 87–102, Life sciences report 25, Springer 1982

  11. Engel K.-J., Nagel R. (2000) One-parameter semigroups for linear evolution equations. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  12. Feller W. (1965) An introduction to probability theory and its applications, vol. II, Wiley, New York

    Google Scholar 

  13. Feller W. (1968) An introduction to probability theory and its applications, vol. I, 3rd edn, Wiley, New York

    MATH  Google Scholar 

  14. Gilpin M., Hanski I., ed. (1991) Metapopulation dynamics. Empirical and theoretical investigations. Academic Press, New York

    Google Scholar 

  15. Gyllenberg M., Hanski I. (1992) Single species metapopulation dynamics: a structured model. Theor Pop Biol 42, 35–61

    Article  MATH  MathSciNet  Google Scholar 

  16. Hadeler K.P., Dietz K. (1982). An integral equation for helminthic infections: global existence of solutions. In: Kurke H., Mecke J., Triebel H., Thiele R. (eds). Recent Trends in Mathematics, Reinhardsbrunn 1982. Teubner, Leipzig, pp. 153–163

    Google Scholar 

  17. Hadeler K.P., Dietz K. (1984) Population dynamics of killing parasites which reproduce in the host. J Math Biol 21, 45–65

    MATH  MathSciNet  Google Scholar 

  18. Hale J.K. (1988) Asymptotic behavior of dissipative systems. AMS, Providence

    MATH  Google Scholar 

  19. Hale J.K., Waltman P. (1989) Persistence in infinite-dimensional systems. SIAM J Math Anal 20, 388–395

    Article  MATH  MathSciNet  Google Scholar 

  20. Hanski I., Gilpin M.E. ed. (1996) Metapopulation biology: ecology, genetics, and evolution. Academic Press, New York

    Google Scholar 

  21. Heijmans, H.J.A.M. Perron–Frobenius theory for positive semigroups, [7, Chap.8], 193–211

  22. Heijmans, H.J.A.M., Some results from spectral theory [7, Chap. 8], 281–291

  23. Heijmans, H.J.A.M., de Pagter, B. Asymptotic behavior, [7], 213– 233

  24. Hille E., Phillips R.S. (1957) Functional analysis and semi-groups. AMS, Providence

    Google Scholar 

  25. Kato T. (1954) On the semi-groups generated by Kolmogoroff’s differential equations. J Math Soc Jpn 6, 12–15

    Article  Google Scholar 

  26. Kolmogorov A.N. (1931) Über die analytischen Methoden der Wahrscheinlichkeitsrechnung. Math Annalen 104, 415–458

    Article  MATH  Google Scholar 

  27. Kostizin, V.A. Symbiose, parasitisme et évolution (étude mathématique), Herman, Paris 1934, translated in The golden age of theoretical ecology Scudo, F., Ziegler, J., (eds.), 369–408, Lecture Notes in Biomathematics 22, Springer, Berlin Heidelberg New York, 1978

  28. Kretzschmar M. (1989) A renewal equation with a birth-death process as a model for parasitic infections. J Math Biol 27, 191–221

    Article  MATH  MathSciNet  Google Scholar 

  29. Martcheva M., Thieme H.R. (2005) A metapopulation model with discrete size structure. Nat Res Mod 18, 379–413

    MATH  MathSciNet  Google Scholar 

  30. Martcheva M., Thieme H.R. (2006). Infinite ODE systems modeling size-structured meta-populations and macroparasitic diseases. In: Magal P, Ruan S (eds). Mathematical biology and epidemiology. Springer, Berlin Heidelberg New York

    Google Scholar 

  31. Metz J.A.J., Gyllenberg M. (2001) How should we define fitness in structured metapopulation models? Including an application to the calculation of evolutionary stable dispersal strategies. Proc R Soc Lond B 268, 499–508

    Article  Google Scholar 

  32. Moilanen A., Smith A.T., Hanski I. (1998) Long term dynamics in a metapopulation of the American pika. Am Nat 152, 530–542

    Article  Google Scholar 

  33. Nagy J. (1996) Evolutionary attracting dispersal strategies in vertebrate metapopulations, Ph.D.Thesis, Arizona State University, Tempe

    Google Scholar 

  34. Pazy A. (1983) Semigroups of linear operators and applications to partial differential equations. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  35. Pugliese A. (2000) Coexistence of macroparasites without direct interactions. Theor Pop Biol 57, 145–165

    Article  MATH  Google Scholar 

  36. Pugliese A. (2002). Virulence evolution in macro-parasites. Mathematical approaches for emerging and reemerging infectious diseases. In: Castillo-Chavez C., Blower S., van den Driessche P., Kirschner D., Yakubo A.-A. (eds). Springer, Berlin Heidelberg New York, 193–213

  37. Reuter G.E.H. (1957) Denumerable Markov processes and the associated contraction semigroups on ℓ. Acta Math 97, 1–46

    Article  MATH  MathSciNet  Google Scholar 

  38. Reuter G.E.H., Ledermann W. (1953) On the differential equations for the transition probabilities of Markov processes with enumerable many states. Proc Cambridge Phil Soc 49, 247–262

    Article  MATH  MathSciNet  Google Scholar 

  39. Sell G.R., You Y. (2002) Dynamics of evolutionary equations. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  40. Smith, A.T., Gilpin, M.E. Spatially correlated dynamics in a pika metapopulation. [20], 407–428

  41. Smith H.L., Waltman P. (1995) The theory of the chemostat: dynamics of microbial populations. Cambridge University Press, Cambridge

    Google Scholar 

  42. Thieme H.R. (1993) Persistence under relaxed point-dissipativity (with applications to an epidemic model). SIAM J Math Anal 24, 407–435

    Article  MATH  MathSciNet  Google Scholar 

  43. Thieme H.R. (1998) Remarks on resolvent positive operators and their perturbation. Disc Cont Dyn Sys 4, 73–90

    Article  MATH  MathSciNet  Google Scholar 

  44. Thieme H.R. (2003) Mathematics in population biology. Princeton University Press, Princeton

    MATH  Google Scholar 

  45. Thieme, H.R., Voigt, J. Stochastic semigroups: their construction by perturbation and approximation, conference proceedings of Positivity IV (in press)

  46. Voigt J. (1987) On stochastic C 0-semigroups and their generators. Trans Theor Stat Phys 16, 453–466

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maia Martcheva.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00285-007-0154-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martcheva, M., Thieme, H.R. & Dhirasakdanon, T. Kolmogorov’s Differential Equations and Positive Semigroups on First Moment Sequence Spaces. J. Math. Biol. 53, 642–671 (2006). https://doi.org/10.1007/s00285-006-0002-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-006-0002-5

Keywords

Navigation