Skip to main content
Log in

Mathematical modelling of engineered tissue growth using a multiphase porous flow mixture theory

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper outlines the framework of a porous flow mixture theory for the mathematical modelling of in vitro tissue growth, and gives an application of this theory to an aspect of tissue engineering. The problem is formulated as a set of partial differential equations governing the space and time dependence of the amounts of each component of the tissue (phase), together with the physical stresses in each component. The theory requires constitutive relations to specify the material properties of each phase, and also requires relations to specify the stresses developed due to mechanical interactions, both within each phase and between different phases. An application of the theory is given to the study of the mobility and aggregation of a population of cells seeded into an artificial polymeric scaffold. Stability analysis techniques show that the interplay of the forces between the tissue constituents results in two different regimes: either the cells form aggregates or disperse through the scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt, W., Dembo, M.: Cytoplasm dynamics and cell motion: two-phase flow models. Math. Biosci. 156, 207–228 (1999)

    Article  MATH  Google Scholar 

  2. Araujo, R.P., McElwain, D.L.S.: A mixture theory for the genesis of residual stresses in growing tissues I: A general formulation. SIAM J Appl. Math. 65, 1261–1284 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Atkin, R.J., Craine, R.E.: Continuum theories of mixtures: basic theory and historical development. Q. J. Mech. Appl. Math. 29, 209–244 (1976)

    MATH  MathSciNet  Google Scholar 

  4. Barocas, V.H., Tranquillo, R.T.: An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance. J. Biomech. Eng. 119, 137–145 (1997)

    Google Scholar 

  5. Bhati, R.S., Mukherjee, D.P., McCarthy, K.J., Rogers, S.H., Smith, D.F., Shalaby, S.W.: The growth of chondrocytes into a fibronectin-coated biodegradable scaffold. J. Biomed. Mater. Res. 56 (1), 74–82 (2001)

    Article  Google Scholar 

  6. Bowen, R.M.: Theory of mixtures. In: A. C. Eringen (ed.), Continuum physics, pp. 1–127 Academic Press, 1976

  7. Bowen, R.M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Engng Sci. 18, 1129–1148 (1980)

    Article  MATH  Google Scholar 

  8. Breward, C.J.W., Byrne, H.M., Lewis, C.E.: The role of cell-cell interactions in a two-phase model for avascular tumour growth J. Math. Biol. 45, 125–152 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Byrne, H., Chaplain, M.A.J.: Free boundary value problems associated with the growth and development of multicellular spheroids. Eur. J. Appl. Math. 8 (6), 639–658 (1997)

    Article  MathSciNet  Google Scholar 

  10. Byrne, H., Preziosi, L.: Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20 (4), 341–366 (2003)

    MathSciNet  Google Scholar 

  11. Byrne, H.M., King, J.R., McElwain, D.L.S., Preziosi, L.: A two-phase model of tumour growth. Appl. Math. Lett. 16, 567–573 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cowin, S.C.: How is a tissue built? J. Biomech. Eng. 122, 553–569 (2000)

    Article  Google Scholar 

  13. Cowin, S.C.: Tissue growth and remodeling. Annu. Rev. Biomed. Eng. 6, 77–107 (2004)

    Article  Google Scholar 

  14. Dar, A., Shachar, M., Leor, J., Cohen, S.: Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol. Bioeng. 80, 305–312 (2002)

    Article  Google Scholar 

  15. Dee, K.C., Andersen, T.T., Bizios, R.: Osteoblast population migration characteristics on substrates modified with immobilized adhesive peptides. Biomaterials 20, 221–227 (1999)

    Article  Google Scholar 

  16. Dembo, M., Harlow, F.: Cell motion contractile networks and the physics of interpenetrating reactive flow. Biophys. J. 50, 109–121 (1986)

    Google Scholar 

  17. Drew, D.A.: Mathematical modeling of two-phase flow. Ann. Rev. Fluid Mech. 15, 261–291 (1983)

    Article  MATH  Google Scholar 

  18. Drew, D.A., Passman, S.L.: Theory of multicomponent fluids. Springer, 1999

  19. Drew, D.A., Segel, L.A.: Averaged equations for two-phase flows. Stud. Appl. Math. L 3, 205–231 (1971)

    Google Scholar 

  20. Ermentrout, G.B., Edelstein-Keshet, L.: Cellular automata approaches to biological modeling. J. Theor. Biol. 160, 97–133 (1993)

    Article  Google Scholar 

  21. Forgacs, G., Foty, R.A., Shafrir, Y., Steinberg, M.S.: Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys. J. 74, 2227–2234 (1998)

    Article  Google Scholar 

  22. Foty, R.A., Forgacs, G., Pfleger, C.M., Steinberg, M.S.: Liquid properties of embryonic-tissues - measurement of interfacial-tensions. Phys. Rev. Lett. 72 (14), 2298–2301 (1994)

    Article  Google Scholar 

  23. Galban, C.J., Locke, B.R.: Analysis of cell growth in a polymer scaffold using a moving boundary approach. Biotechnol. Bioeng. 56 (4), 422–432 (1997)

    Article  Google Scholar 

  24. Garikipati, K., Arruda, E.M., Grosh K., Narayanan H., Calve, S.: A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J. Mech. Phys. Solids. 52, 1595–1625 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Grodzinsky, A.J., Kamm, R.D., Lauffenburger, D.A.: Quantitative aspects of tissue engineering: basic issues in kinetics transport and mechanics. In: R Lanzer and R Langer and W Chick (ed.), Principles of Tissue Engineering. pp. 193–207 R.G. Landes Company, 1997

  26. Hoger, A.: Virtual configurations and constitutive equations for residually stressed bodies with material symmetry. J. Elast. 48 (2), 125–144 (1997)

    Article  MathSciNet  Google Scholar 

  27. Humphrey, J.D.: Continuum biomechanics of soft biological tissues. Proc. R. Soc. Lond. A 459, 3–46 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Humphrey, J.D., Rajagopal, K.R.: A constrained mixture model for growth and remodeling of soft tissues. Math. Mod. Meth. Appl. S. 12, 407–430 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hunter, D.J., March, L., Sambrook, P.N.: Knee osteoarthritis: The influence of environmental factors. Clin. Exp. Rheumatol. 20 (1), 93–100 (2002)

    Google Scholar 

  30. Ingram, J.D., Eringen, A.C.: A continuum theory of chemically reacting media - II Constitutive equations of reacting fluid mixtures. Int. J. Engng Sci. 5, 289–322 (1967)

    Article  Google Scholar 

  31. Ishuag-Riley, S.L., Crane-Kruger, G.M., Miller, M.J., Yasko, A.W., Yaszemski, M.J., Mikos, A.G.: Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J. Biomed. Mater. Res. 36, 17–28 (1997)

    Article  Google Scholar 

  32. Ishuag-Riley, S.L., Crane-Kruger, G.M., Yaszemski, M.J., Mikos, A.G.: Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials 19, 1405–1412 (1998)

    Article  Google Scholar 

  33. Itano, N., Atsumi, F., Sawai, T., Yamada, Y., Miyaishi, O., Senga, T., Hamaguchi, M., Kimata, K.: Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. P. Natl. Acad. Sci. USA 99 (6), 3609–3614 (2002)

    Article  Google Scholar 

  34. Jakab, K., Neagu, A., Mironov, V., Markwald, R.R., Forgacs, G.: Engineering biological structures of prescribed shape using self-assembling multicellular systems. P. Natl. Acad. Sci. USA. 101 (9), 2864–2869 (2004)

    Article  Google Scholar 

  35. Lai, W.M., Hou, J.S., Mow, V.C.: A triphasic theory for the swelling and deformational behaviours of articular cartilage. J. Biomech. Eng. 113, 245–258 (1991)

    Google Scholar 

  36. Landman, K.A., Please, C.P.: Tumour dynamics and necrosis: surface tension and stability. Math. Med. Biol. 18, 131–158 (2001)

    MATH  Google Scholar 

  37. Langer, R., Vacanti, J.P.: Tissue Engineering. Science 260, 920–926 (1993)

    Google Scholar 

  38. Lappa, M.: Organic tissues in rotating bioreactors: fluid-mechanical aspects dynamic growth models, and morphological evolution. Biotechnol. Bioeng. 84 (5), 518–532 (2003)

    Article  Google Scholar 

  39. Levenberg, S., Langer, R.: Advances in tissue engineering. In: Current topics in developmental biology, Elsevier 61, (2004)

  40. Li, S.H., de Wijn, J.R., Layrolle, P., de Groot, K.: Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Eng. 9 (3), 535–548 (2003)

    Article  Google Scholar 

  41. Longo, D., Peirce, S.A., Skalak, T.C., Davidson, L., Marsden, M., Dzamba, B., DeSimone, D.W.: Multicellular computer simulation of morphogenesis: blastocoel roof thinning and matrix assembly in Xenopus laevis. Dev. Biol. 271 (1), 210–222 (2004)

    Article  Google Scholar 

  42. Lubkin, S.R., Jackson, T.: Multiphase mechanics of capsule formation in tumors. J. Biomech. Eng. 124 (2), 237–243 (2002)

    Article  Google Scholar 

  43. MacArthur, B.D., Please, C.P., Taylor, M., Oreffo, R.O.C.: Mathematical modelling of skeletal repair. Biochem. Bioph. Res. Co. 313, 825–833 (2004)

    Article  Google Scholar 

  44. Mackie, E.J.: Osteoblasts: novel roles in orchestration of skeletal architecture. Int. J. Biochem. Cell. B. 35 (9), 1301–1305 (2003)

    Article  Google Scholar 

  45. Marle, C.M.: On macroscopic equations governing multiphase flow with diffusion and chemical reactions in porous media. Int. J. Engng Sci. 20 (5), 643–662 (1982)

    Article  MathSciNet  Google Scholar 

  46. Martin, I., Wendt, D., Heberer, M.: The role of bioreactors in tissue engineering. Trends Biotechnol. 22, 80–86 (2004)

    Article  Google Scholar 

  47. Massoudi, M.: Constitutive relations for the interaction force in multicomponent particulate flows. Int. J. Nonlinear. Mech. 38 (3), 313–336 (2003)

    Article  Google Scholar 

  48. Mizuno, S., Alleman, F., Glowacki, J.: Effects of medium perfusion on matrix production by bovine chondrocytes in three-dimensional collagen sponges. J. Biomed. Mater. Res. 56 (3), 368–375 (2001)

    Article  Google Scholar 

  49. Morse, P.M., Feshbach, H.: Methods of theoretical physics. Vol 1. McGraw-Hill, 1953

  50. Mow, V.C., Kuei, S.C., Lai, W.M., Armstrong, C.G.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiment. J. Biomech. Eng. 102, 73–84 (1980)

    Article  Google Scholar 

  51. Murray, J.D.: Mathematical Biology. Springer, 3rd edn. 2002

  52. Palferman, T.G.: Bone and joint diseases around the world. The UK perspective. J. Rheumatol. 30, 33–35 (2003)

    Google Scholar 

  53. Rose, F.R., Cyster, L.A., Grant, D.M., Scotchford, C.A., Howdle, S.M., Shakesheff, K.M.: In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel. Biomaterials 25 (24), 5507–5514 (2004)

    Article  Google Scholar 

  54. Roy, T.D., Simon, J.L., Ricci, J.L., Rekow, E.D., Thompson, V.P., Parsons, J.R.: Performance of degradable composite bone repair products made via three-dimensional fabrication techniques. J. Biomed. Mater. Res. A 66, 283–291 (2003)

    Article  Google Scholar 

  55. Ryan, P.L., Foty, R.A., Kohn, J., Steinberg, M.S.: Tissue spreading on implantable substrates is a competitive outcome of cell-cell vs. cell-substratum adhesivity. P. Natl. Acad. Sci. USA. 98 (8), 4323–4327 (2001)

    Article  Google Scholar 

  56. Saini, S., Wick, T.M.: Concentric cylinder bioreactor for production of tissue engineered cartilage: Effect of seeding density and hydrodynamic loading on construct development. Biotechnol. Prog. 19 (2), 510–521 (2003)

    Article  Google Scholar 

  57. Sengers, B.G., Oomens, C.W.J., Baaijens, F.P.T.: An integrated finite-element approach to mechanics transport and biosynthesis in tissue engineering. J. Biomech. Eng. 126, 82–90 (2004)

    Article  Google Scholar 

  58. Sharma, B., Elisseeff, J.H.: Engineering structurally organized cartilage and bone tissues. Ann. Biomed. Eng. 32 (1), 148–159 (2004)

    Article  Google Scholar 

  59. Sheffield, R.E., Metzner, A.B.: Flows of nonlinear fluids through porous media. AIChE J. 22 (4), 736–744 (1976)

    Article  Google Scholar 

  60. Sherwood, J.K., Riley, S.L., Palazzolo, R., Brown, S.C., Monkhouse, D.C., Coates, M., Griffith, L.G., Landeen, L.K., Ratcliffe, A.: A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23, 4739–4751 (2002)

    Article  Google Scholar 

  61. Sittinger, M., Perka, C., Schultz, O., Haupl, T., Burmester, G.R.: Joint cartilage regeneration by tissue engineering. Z. Rheumatol. 58 (3), 130–135 (1999)

    Article  Google Scholar 

  62. Skalak, R., Zargaryan. S., Jain, R.K., Netti, P.A., Hoger, A.: Compatibility and the genesis of residual stress by volumetric growth. J. Math. Biol. 34 (8), 889–914 (1996)

    MathSciNet  Google Scholar 

  63. Stock, U.A., Vacanti, J.P.: Tissue engineering: current state and prospects. Annu. Rev. Med. 52, 443–451 (2001)

    Article  Google Scholar 

  64. Sun, D.N., Gu, W.Y., Guo, X.E., Lai, W.M., Mow, V.C.: A mixed finite element formulation of triphasic mechano-electrochemical theory for charged hydrated biological soft tissues. Int. J. Numer. Meth. Eng. 45, 1375–1402 (1999)

    Article  MATH  Google Scholar 

  65. Truesdell, C., Noll, W.: The nonlinear field theory of mechanics. In: S. Flugge (ed.), Handbuch der Physik, Springer, 1960

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Lemon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemon, G., King, J., Byrne, H. et al. Mathematical modelling of engineered tissue growth using a multiphase porous flow mixture theory. J. Math. Biol. 52, 571–594 (2006). https://doi.org/10.1007/s00285-005-0363-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-005-0363-1

Keywords or phrases

Navigation