Skip to main content

Advertisement

Log in

Canards for a reduction of the Hodgkin-Huxley equations

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper shows that canards, which are periodic orbits for which the trajectory follows both the attracting and repelling part of a slow manifold, can exist for a two-dimensional reduction of the Hodgkin-Huxley equations. Such canards are associated with a dramatic change in the properties of the periodic orbit within a very narrow interval of a control parameter. By smoothly connecting stable and unstable manifolds in an asymptotic limit, we predict with great accuracy the parameter value at which the canards exist for this system. This illustrates the power of using singular perturbation theory to understand the dynamical properties of realistic biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  2. Cronin, J.: Mathematical Aspects of Hodgkin-Huxley neural theory. Cambridge University Press, Cambridge, 1987

  3. Keener, J., Sneyd, J.: Mathematical physiology. Springer, New York, 1998

  4. Drover, J., Rubin, J., Su, J., and Ermentrout, B.: Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies. Preprint.

  5. Rinzel, J.: Excitation dynamics: insights from simplified membrane models. Federation Proc. 44, 2944–2946 (1985)

    Google Scholar 

  6. Doedel, E., Champneys, A., Fairgrieve, T., Kuznetsov, Y., Sandstede, B., Wang X.: AUTO 97: Continuation and bifurcation software for ordinary differential equations. Available via FTP from directory /pub/doedel/auto at ftp.cs.concordia.ca, 1997

  7. Callot, J.-L., Diener, F., Diener, M.: Le problème de la ``chasse au canard''. C.R. Acad. Sci. Paris (Sér. I) 286, 1059–1061 (1978)

    MATH  MathSciNet  Google Scholar 

  8. Benoit, E., Callot, J.-L., Diener, F., Diener, M.: Chasse au canard. Collect. Math. 32, 37–119 (1981)

    MATH  MathSciNet  Google Scholar 

  9. Eckhaus, W.: Relaxation oscillations including a standard chase on French ducks. Lecture Notes in Math. 985, 449–494 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Baer S.M., Erneux, T.: Singular Hopf bifurcation to relaxation oscillations. SIAM J. Appl. Math. 46, 721–739 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brøns, M.: Excitation and annihilation in the FitzHugh-Nagumo equations. IMACS Trans. Sci. Comp. 1.1, 297–301 (1989)

    Google Scholar 

  12. Brøns, M., Bar-Eli, K.: Canard explosion and excitation in a model of the Belousov-Zhabotinsky reaction. J. Phys. Chem. 95, 8706–8713 (1991)

    Article  Google Scholar 

  13. Baer, S.M., Erneux, T.: Singular Hopf bifurcation to relaxation oscillations II. SIAM J. Appl. Math. 52, 1651–1664 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Guckenheimer, J., Hoffman, K., Weckesser, W.: Numerical computation of canards. Int. J. Bif. Chaos 10, 2669–2687 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Krupa, M. Szmolyan, P.: Relaxation oscillation and canard explosion. J. Diff. Eq. 174, 312–368 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Szmolyan, P. Wechselberger, M.: Canards in R 3. J. Diff. Eq. 177, 419–453 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Moehlis, J.: Canards in a surface oxidation reaction. J. Nonlin. Sci. 12, 319–345 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Brøns, M., Bar-Eli, K.: Asymptotic analysis of canards in the EOE equations and the role of the inflection line. Proc. R. Soc. Lond. A 445, 305–322 (1994)

    Article  MATH  Google Scholar 

  19. Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. Journal 21, 193–226 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Diff. Eq. 31, 53–98 (1979)

    MATH  MathSciNet  Google Scholar 

  21. Wiggins, S.: Normally Hyperbolic Invariant Manifolds in Dynamical Systems. Springer, New York, 1994

  22. Rinzel, J., Miller, R.N.: Numerical calculations of stable and unstable periodic solutions to the Hodgkin-Huxley equations. Math. Biosci. 49, 27–59 (1980)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Moehlis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moehlis, J. Canards for a reduction of the Hodgkin-Huxley equations. J. Math. Biol. 52, 141–153 (2006). https://doi.org/10.1007/s00285-005-0347-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-005-0347-1

Key words or phrases

Navigation