Skip to main content
Log in

Gene algebra from a genetic code algebraic structure

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

By considering two important factors involved in the codon-anticodon interactions, the hydrogen bond number and the chemical type of bases, a codon array of the genetic code table as an increasing code scale of interaction energies of amino acids in proteins was obtained. Next, in order to consecutively obtain all codons from the codon AAC, a sum operation has been introduced in the set of codons. The group obtained over the set of codons is isomorphic to the group (Z64, +) of the integer module 64. On the Z64-algebra of the set of 64N codon sequences of length N, gene mutations are described by means of endomorphisms f:(Z64)N→(Z64)N. Endomorphisms and automorphisms helped us describe the gene mutation pathways. For instance, 77.7% mutations in 749 HIV protease gene sequences correspond to unique diagonal endomorphisms of the wild type strain HXB2. In particular, most of the reported mutations that confer drug resistance to the HIV protease gene correspond to diagonal automorphisms of the wild type. What is more, in the human beta-globin gene a similar situation appears where most of the single codon mutations correspond to automorphisms. Hence, in the analyses of molecular evolution process on the DNA sequence set of length N, the Z64-algebra will help us explain the quantitative relationships between genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alf-Steinberger, C.: The genetic code and error transmission. Proc. Natl. Acad. Sci. USA, 64, 584–591 (1969)

    Google Scholar 

  2. Arques, D.G., Michel, C.J.: “A complementary circular code in the protein coding genes”. J. Theor. Biol. 182, 45–58 (1996)

    Article  PubMed  Google Scholar 

  3. Balakrishnan, J.: Symmetry scheme for amino acid codons. Phys. Rev. E, 65, 021912–5 (2002)

    Google Scholar 

  4. Bashford, J.D., Tsohantjis, I., Jarvis, P.D.: A supersymmetric model for the evolution of the genetic code. Proc. Natl. Acad. Sci. USA 95, 987–992 (1998)

    Article  PubMed  Google Scholar 

  5. Bashford, J.D., Jarvis P.D.: The genetic code as a periodic table. Biosystems 57, 147–161 (2000)

    Article  PubMed  Google Scholar 

  6. Beland, P., Allen, T.F.: The origin and evolution of the genetic code. J Theor Biol. 170, 359–365 (1994)

    Article  PubMed  Google Scholar 

  7. Bertman, M.O., Jungck, J.R.: Group graph of the genetic code. J. Hered. 70, 379–384 (1979)

    PubMed  Google Scholar 

  8. Birkhoff, G., MacLane, S.: A survey of Modern Algebra. The Macmillan Company. New York (1941)

  9. Chechetkin, V.R. “Block structure and stability of the genetic code”. J. Theor. Biol. 222, 177–188 (2003)

    Google Scholar 

  10. Crick, F.H.C.: The origin of the genetic code. J. Mol. Biol. 38, 367–379 (1968)

    Article  PubMed  Google Scholar 

  11. Duret, L., Mouchiroud, D.: Expression pattern and, surprisingly, gene length, shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci 96, 17–25 (1999)

    Article  Google Scholar 

  12. Epstein, C. J.: Role of the amino-acid “code” and of selection for conformation in the evolution of proteins. Nature 210, 25–28 (1966)

    PubMed  Google Scholar 

  13. Frappat, L., Sciarrino A. and Sorba, P. “A crystal base for the genetic code” Phys. Lett. A250, 214–221 (1998)

    Google Scholar 

  14. Freeland, S. J., Hurst, L. D.: The genetic code is one in a million. J. Mol. Evol. 47, 238–248 (1998)

    PubMed  Google Scholar 

  15. Freeland, S.J., Knight, R.D., Landweber, L.F., Hurst, L.D.: Early fixation of an optimal genetic code. Mol. Biol. Evol. 17, 511–518 (2000)

    PubMed  Google Scholar 

  16. Friedman, S.M., Weinstein, I..B.: Lack of fidelity in the translation of ribopolynucleotides. Proc Natl Acad Sci USA 52, 988–996 (1964)

    PubMed  Google Scholar 

  17. Fuglsang, A.: Strong associations between gene function and codon usage. APMIS 111, 843–847 (2003)

    PubMed  Google Scholar 

  18. Gillis, D., Massar, S., Cerf, N.J., Rooman, M.: Optimality of the genetic code with respect to protein stability and amino acid frequencies. Genome Biology 2, research0049.1 –research0049.12 (2001)

  19. Grantham R.: Amino Acid Difference Formula to Help Explain Protein Evolution. Science, 185, 862–864 (1974)

    Google Scholar 

  20. Gu, W., Zhou, T., Ma, J., Sun, X., Lu, Z.: The relationship between synonymous codon usage and protein structure in Escherichia coli and Homo sapiens. Biosystems 73, 89–97 (2004)

    PubMed  Google Scholar 

  21. Gupta, S.K., Majumdar, S., Bhattacharya, K., Ghosh, T.C.: Studies on the relationships between synonymous codon usage and protein secondary structure. Biochem. Biophys. Res. Comm. 269, 692–696 (2000)

    Article  PubMed  Google Scholar 

  22. He, M., Petoukhov, S.V., Ricci, P.E.: Genetic Code, Hamming Distance and Stochastic Matrices. Bull. Math. Biol. 66, 1405–1421 (2004)

    Article  PubMed  Google Scholar 

  23. Jiménez-Montaño, M.A.: The hypercube structure of the genetic code explains conservative and non-conservative amino acid substitutions in vivo and in vitro. Biosystems 39, 117–125 (1996)

    Article  PubMed  Google Scholar 

  24. Jiménez-Montaño, M.A.: Protein Evolution Drives the Evolution of the Genetic Code and Vice Versa. BioSystems 54, 47–64 (1999)

    Article  PubMed  Google Scholar 

  25. Jukes, T.H., Osawa, S.: Evolutionary changes in the genetic code. Comp Biochem. Physiol. B. 106, 489–494 (1993)

    Article  PubMed  Google Scholar 

  26. Jungck, J.R.: “The genetic code as a periodic tables”. J.Mol.Evol. 11, 211–224 (1978)

    Article  PubMed  Google Scholar 

  27. Karasev, V.A., Stefanov, V.E.: Topological Nature of the Genetic Code. J. Theor. Biol. 209, 303–317 (2001)

    Article  PubMed  Google Scholar 

  28. Kauzmann, W.: Some factors in the interpretation of protein denaturation. Advances in Protein Chemistry, Vol. 14, 1–63 (1959)

    Google Scholar 

  29. Kostrikin, A.I.: Introducción al algebra. Editorial MIR, Moscú 1980

  30. Lehmann, J.: Physico-chemical Constraints Connected with the Coding Properties of the Genetic System. J. Theor. Biol. 202, 129–144 (2000)

    Article  PubMed  Google Scholar 

  31. Lewin, B.: Genes VIII. Oxford University Press. 2004

  32. Makrides, S.C.: Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60, 512–538 (1996)

    PubMed  Google Scholar 

  33. Miyazawa, S., Jernigan, R. L.: Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules, 18, 534–552 (1985)

    Google Scholar 

  34. Miyazawa, S., Jernigan R.L.: Residue–Residue Potentials with a Favorable Contact Pair Term and an Unfavorable High Packing Density Term, for Simulation and Threading. J. Mol. Biol. 256, 623–644 (1996)

    Article  PubMed  Google Scholar 

  35. Nakamura Y, Gojobori T, and Ikemura T. Codon usage tabulated from international DNA sequence database: status for the year 2000. Nucleic Acids Research 28, 292 (2000)

    Article  PubMed  Google Scholar 

  36. Oresic. M., Shalloway, D.: Specific correlations between relative synonymous codon usage and protein secondary structure. J Mol. Biol. 281, 31–48 (1998)

    Article  PubMed  Google Scholar 

  37. Osawa, S., Jukes, T.H., Watanabe, K., Muto, A.: Recent evidence for evolution of the genetic code. Microbiol Rev. 56, 229–264 (1992)

    PubMed  Google Scholar 

  38. Parker, J.: Errors and alternatives in reading the universal genetic code. Microbiol Rev. 53, 273–298 (1989)

    PubMed  Google Scholar 

  39. Redéi, L.: Algebra, Vol. 1. Akadémiai Kiadó, Budapest (1967)

  40. Rose, G.D., Geselowitz A.R., Lesser G.J., Lee R.H., Zehfus M.H.: Hydrophobicity of Amino Acids Residues in Globular Proteins. Science 229, 834–838 (1985)

    PubMed  Google Scholar 

  41. Sánchez, R., Morgado, E., Grau, R.: The Genetic Code Boolean Lattice. MATCH Commun. Math. Comput. Chem 52, 29–46 (2004)

    Google Scholar 

  42. Sánchez, R., Morgado, E., Grau, R.: A Genetic Code Boolean Structure. I. The Meaning of Boolean Deductions. Bull. Math. Biol. 67, 1–14 (2005)

    Article  Google Scholar 

  43. Shoda K.: Über die Automorphismen Einer Endlichen Abelichen Gruppe. Math. Ann. 100, 674–686 (1928)

    Article  Google Scholar 

  44. Siemion, I.Z., Siemion, P.J., Krajewski, K.: Chou-Fasman conformational amino acid parameters and the genetic code. Biosystems 36, 231–238 (1995)

    Article  PubMed  Google Scholar 

  45. Tao, X., Dafu, D.: The relationship between synonymous codon usage and protein structure. FEBS Lett 434, 93–96 (1998)

    Article  PubMed  Google Scholar 

  46. Volkenshtein, M.V.: Biofísica. Editorial MIR, Moscú, Capítulo 17, 621–639 (1985)

    Google Scholar 

  47. Woese, C.R.: On the evolution of the genetic code. Proc Natl Acad Sci USA, 54, 1546–1552 (1965)

    Google Scholar 

  48. Yang, Z.: Adaptive molecular evolution. In Handbook of statistical genetics, (Balding, M., Bishop, M., Cannings, C., eds), Wiley:London, pp. 327–350 (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sanchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez, R., Morgado, E. & Grau, R. Gene algebra from a genetic code algebraic structure. J. Math. Biol. 51, 431–457 (2005). https://doi.org/10.1007/s00285-005-0332-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-005-0332-8

Key words or phrases

Navigation