Akin, E.: The Geometry of Population Genetics. Lect. Notes Biomath., vol. 31, Springer, Berlin, 1979
Athreya, K.B., Ney P.E.: Branching Processes. Springer, New York, 1972
Baake, E., Baake, M., Wagner, H.: Ising quantum chain is equivalent to a model of biological evolution. Phys. Rev. Lett. 78, 559–562 (1997); Erratum: Phys. Rev. Lett. 79, 1782 (1997)
Google Scholar
Baake, E., Baake, M., Wagner, H.: Quantum mechanics versus classical probability in biological evolution. Phys. Rev. E 57, 1191–1192 (1998)
Article
Google Scholar
Baake, E., Wagner, H.: Mutation-selection models solved exactly with methods from statistical mechanics. Genet. Res. 78, 93–117 (2001)
Article
Google Scholar
Ben-Arous, G., Bovier, A., Gayrard, V.: Glauber dynamics of the random energy model. 1. Metastable motion on the extreme states. Commun. Math. Phys. 235, 379–425 (2003)
Google Scholar
Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability in stochastic dynamics of disordered mean-field models. Probab. Theor. Rel. Fields 119, 99–161 (2001); cond-mat/9811331
MathSciNet
MATH
Google Scholar
Brémaud, P.: Markov Chains. Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, New York, 1999
de Bruijn, N.G.: Asymptotic Methods in Analysis. 3rd ed., corrected reprint, Dover, New York, 1981
Bürger, R.: The Mathematical Theory of Selection, Recombination, and Mutation. Wiley, Chichester, 2000
Bulmer, M.: Theoretical Evolutionary Ecology. Sinauer, Sunderland, 1994
Burke, C., Rosenblatt, M.: A Markovian function of a Markov chain. Ann. Math. Statist. 29, 1112–1122 (1958)
MATH
Google Scholar
Caswell, H.: Matrix Population Models: Construction, Analysis, and Interpretation. 2nd ed., Sinauer, Sunderland, 2000
Charlesworth, B.: Mutation-selection balance and the evolutionary advantage of sex and recombination. Genet. Res. Camb. 55, 199–221 (1990)
Google Scholar
Crow, J.F., Kimura, M.: An Introduction to Population Genetics Theory. Harper & Row, New York, 1970
Durrett, R.: Probability models for DNA sequence evolution. Springer, New York, 2002
Eigen, M., McCaskill, J., Schuster, P.: The molecular quasi-species. Adv. Chem. Phys. 75, 149–263 (1989)
Google Scholar
Ethier, S.N., Kurtz, T.G.: Markov Processes – Characterization and Convergence. Wiley, New York, 1986
Ewens, W.: Mathematical Population Genetics. 2nd ed., Springer, New York, 2004
Ewens, W., Grant, P.: Statistical Methods in Bioinformatics. Springer, New York, 2001
Garske, T., Grimm, U.: A maximum principle for the mutation-selection equilibrium of nucleotide sequences. Bull. Math. Biol. 66, 397–421 (2004); physics/0303053
Article
Google Scholar
Gayrard, V.: The thermodynamic limit of the q-state Potts–Hopfield model with infinitely many patterns. J. Stat. Phys. 68, 977–1011 (1992)
MathSciNet
MATH
Google Scholar
Georgii, H.-O., Baake, E.: Multitype branching processes: the ancestral types of typical individuals. Adv. Appl. Prob. 35, 1090–1110 (2003); math.PR/0302049
Article
MATH
Google Scholar
Gerland, U., Hwa, T.: On the selection and evolution of regulatory DNA motifs. J. Mol. Evol. 55, 386–400 (2002)
Article
Google Scholar
Hadeler, K.P.: Stable polymorphisms in a selection model with mutation. SIAM J. Appl. Math. 41, 1–7 (1981)
Google Scholar
Hermisson, J., Redner, O., Wagner, H., Baake, E.: Mutation-selection balance: Ancestry, load, and maximum principle. Theor. Pop. Biol. 62, 9–46 (2002); cond-mat/0202432
Article
Google Scholar
Hermisson, J., Wagner, H., Baake, M.: Four-state quantum chain as a model of sequence evolution. J. Stat. Phys. 102, 315–343 (2001); cond-mat/0008123
Article
MathSciNet
MATH
Google Scholar
Hofbauer, J.: The selection-mutation equation. J. Math. Biol. 23, 41–53 (1985)
MathSciNet
MATH
Google Scholar
Jagers, P.: General branching processes as Markov fields. Stoch. Proc. Appl. 32, 183–242 (1989)
Article
MathSciNet
MATH
Google Scholar
Jagers, P.: Stabilities and instabilities in population dynamics. J. Appl. Prob. 29, 770–780 (1992)
MathSciNet
MATH
Google Scholar
Karlin, K.S., Taylor, H.M.: A first course in stochastic processes. 2nd ed., Academic Press, San Diego, 1975
Karlin, K.S., Taylor, H.M.: A Second Course in Stochastic Processes. Academic Press, San Diego, 1981
Kato, T.: Perturbation Theory for Linear Operators. reprinted ed., Springer, New York, 1995
Keilson, J.: Markov Chain Models – Rarity and Exponentiality. Springer, New York, 1979
Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, New York, 1981
Kondrashov, A.S.: Deleterious mutations and the evolution of sexual reproduction. Nature 336, 435–440 (1988)
Article
Google Scholar
Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge, 2001
Leuthäusser, I.: Statistical mechanics of Eigen’s evolution model. J. Stat. Phys. 48, 343–360 (1987)
MathSciNet
Google Scholar
Mézard, M., Parisi, G., Virasoro, M.A.: Spin Glass Theory and Beyond. World Scientific, Singapore, 1987
Nowak, M., Schuster, P.: Error thresholds of replication in finite populations. Mutation frequencies and the onset of Muller’s ratchet. J. Theor. Biol. 137, 375–395 (1989)
Google Scholar
Prasolov, V.V.: Problems and Theorems in Linear Algebra. AMS, Providence, RI, 1994; corrected reprint, 1996
Redner, O.: Discrete approximation of non-compact operators describing continuum-of-alleles models, Proc. Edinburgh Math. Soc. 47, 449–472 (2004); math.SP/0301024
Article
Google Scholar
Rouzine, I.M., Wakeley, J., Coffin, J.M.: The solitary wave of asexual evolution. PNAS 100, 587–592 (2003)
Article
Google Scholar
Swofford, D.L., Olsen, G.J., Waddell, P.J., Hillis, D.M.: Phylogenetic Inference. In: D.M. Hillis, C. Moritz, B.K. Mable (eds), Molecular Systematics, Sinauer, Sunderland, 1995, pp. 407–514
Tarazona, P.: Error threshold for molecular quasispecies as phase transition: From simple landscapes to spin glass models. Phys. Rev. A 45, 6038–6050 (1992)
Article
Google Scholar
Thompson, C.J., McBride, J.L.: On Eigen’s theory of the self-organization of matter and the evolution of biological macromolecules. Math. Biosci. 21, 127–142 (1974)
Article
MATH
Google Scholar
Wagner, H., Baake, E., Gerisch, T.: Ising quantum chain and sequence evolution. J. Stat. Phys. 92, 1017–1052 (1998)
Article
MathSciNet
MATH
Google Scholar