Skip to main content
Log in

Large amplification in stage-structured models: Arnol’d tongues revisited

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The coexistence of periodic and point attractors has been confirmed for a range of stage-structured discrete time models. The periodic attractor cycles have large amplitude, with the populations cycling between extremely low and surprisingly high values when compared to the equilibrium level. In this situation a stable state can be shocked by noise of sufficient strength into a state of high volatility. We found that the source of these large amplitude cycles are Arnol’d tongues, special regions of parameter space where the system exhibits periodic behaviour. Most of these tongues lie entirely in that part of parameter space where the system is unstable, but there are exceptions and these exceptions are the tongues that lead to attractor coexistence. Similarity in the geometry of Arnol’d tongues over the range of models considered might suggest that this is a common feature of stage-structured models but in the absence of proof this can only be a useful working hypothesis. The analysis shows that although large amplitude cycles might exist mathematically they might not be accessible biologically if biological constraints, such as non-negativity of population densities and vital rates, are imposed. Accessibility is found to be highly sensitive to model structure even though the mathematical structure is not. This highlights the danger of drawing biological conclusions from particular models. Having a comprehensive view of the different mechanisms by which periodic states can arise in families of discrete time models is important in the debate on whether the causes of periodicity in particular ecological systems are intrinsic, environmental or trophic. This paper is a contribution to that continuing debate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. New York: Springer-Verlag, 1983

  2. Beddington, J.R., Free, C.A., Lawton, J.H.: Dynamic Complexity in predator-prey models framed in difference equations. Nature 255, 58–60 (1975)

    Google Scholar 

  3. Berryman, A.A.: The Theory and Classification of Outbreaks. In: Barbosa, P., Schultz, J.C. (eds.), Insect Outbreaks, San Diego: Academic Press, 1987

  4. Berryman, A.A.: Food web connectance and feedback dominance, or does everything really depend on everything else? OIKOS 68, 183–185 (1993)

  5. Berryman, A.A.: Do Trophic Interactions Cause Population Cycles? In: Berryman, A.A. (ed.), Population Cycles: The Case for Trophic Interactions, Oxford, UK: Oxford University Press, 2002

  6. Bjornstad, O.N., Fromentin, J., Stenseth, N.C., Gjosaeter, J.: Cycles and trends in cod populations. Proc. Natl. Acad. Sci. USA 96, 5066–5071 (1999)

    Article  Google Scholar 

  7. Blarer, A., Doebeli, M.: Resonance effects and outbreaks in ecological time series. Ecol. Lett. 2, 167–177 (1999)

    Article  Google Scholar 

  8. Caswell, H.: Matrix Population Models. Sunderland, Massachusetts: Sinauer Associates Inc., 2001

  9. Crowley, P.H., Nisbet, R.M., Gurney, W.S.C., Lawton, J.H.: Population regulation in animals with complex life-histories: Formulation and analysis of the damselfly model. Adv. Ecol. Res. 17, 1–58 (1987)

    Google Scholar 

  10. Cushing, J.M., Costantino, R.F., Dennis, B., Desharnais, R.A., Henson, S.M.: Nonlinear population dynamics: models, experiments and data. J. theor. Biol. 194, 1–9 (1998)

    Article  Google Scholar 

  11. Cushing, J.M., Henson, S.M., Desharnais, R.A., Dennis, B., Costantino, R.F., King, A.: A chaotic attractor in ecology: theory and experimental data. Chaos, Solitons and Fractals 12, 219–234 (2001)

    Google Scholar 

  12. Dennis, B., Desharnais, R.A., Cushing, J.M., Costantino, R.F.: Nonlinear Demographic Dynamics: Mathematical Models, Statistical Methods, and Biological Experiments. Ecol. Monogr. 65, 261–281 (1995)

    Google Scholar 

  13. Dietz, K.: The incidence of infectious diseases under the influence of seasonal fluctuations. Lecture Notes: Biomathematics 11, New York: Springer-Verlag, 1976, pp. 1–15

  14. Gambaudo, J.M.: Perturbation of a Hopf Bifurcation by an External Time-Periodic Forcing. J. Diff. Eqns. 57, 172–199 (1985)

    MATH  Google Scholar 

  15. Geritz, S.A.H., Kisdi, E., Meszena, G., Metz, J.A.J.: Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree. Evolutionary Ecology 12, 35–57 (1998)

    Article  Google Scholar 

  16. Ginzburg, L.R., Taneyhill, D.E.: Population cycles of forest Lepidoptera: a maternal effect hypothesis. J. Anim. Ecol. 63, 79–92 (1994)

    Google Scholar 

  17. Greenman, J.V., Benton, T.G.: The amplification of environmental noise in population models: causes and consequences. Am. Nat. 161, 225–239 (2003)

    Article  Google Scholar 

  18. Greenman, J.V., Kamo, M., Boots, M.: External Forcing of Ecological and Epidemiological Systems: a resonance approach. Physica D 190, 136–151 (2004)

    Article  Google Scholar 

  19. Guckenheimer, J., Oster, J.G., Ipaktchi, A.: The dynamics of density dependent population models. J. Math. Biol. 4, 101–147 (1977)

    MATH  Google Scholar 

  20. Gurney, W.S.C., Nisbet, R.M.: Ecological Dynamics. Oxford, UK: Oxford University Press, 1998

  21. Henson, S.M.: Multiple attractors and resonance in periodically forced population models. Physica D 140, 33–49 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Higgins, K., Hastings, A., Sarvela, J.N., Botsford, L.W.: Stochastic Dynamics and Deterministic Skeletons: Population Behavior of Dungeness Crab. Science 276, 1431–1435 (1997)

    CAS  Google Scholar 

  23. Inchausti, P., Ginzburg, L.R.: Small mammals cycles in northern Europe: patterns and evidence for the maternal effect hypothesis. J. Anim. Ecol. 67, 180–194 (1998)

    Article  Google Scholar 

  24. Kaitala, V., Ranta, E., Lindström, J.: Cyclic population dynamics and random perturbations. Ecology 65, 249–251 (1996)

    Google Scholar 

  25. Kaitala, V., Ylikarjula, J., Heino, M.: Dynamic complexities in host-parasitoid interaction. J. theor. Biol. 197, 331–341 (1999)

    Article  Google Scholar 

  26. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge, UK: Cambridge University Press, 1998

  27. Kendall, B.E., Prendergast, J., Bjornstad, O.N.: The macroecology of population dynamics: taxonomic and biogeographic patterns in population cycles. Ecol. Lett. 1, 160–164 (1998)

    Article  Google Scholar 

  28. Kendall, B.E., Briggs, C.J., Murdoch, W.W., Turchin, P., Ellner, S.P., McCauley, E., Nisbet, R.M., Wood, S.N.: Why do populations cycle? A synthesis of statistical and mechanistic modelling approaches. Ecology 80, 1789–1805 (1999)

    Google Scholar 

  29. King, A.A., Schaffer, W.M.: The rainbow bridge: Hamiltonian limits and resonance in predator-prey dynamics. J. Math. Biol. 39, 439–469 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. King, A.A., Schaffer, W.M.: The geometry of a population cycle: a mechanistic model of snowshoe hare demography. Ecology 82, 814–830 (2001)

    Google Scholar 

  31. Kon, R., Takeuchi, Y.: The Effect of Evolution on Host-Parasitoid Systems. J. theor. Biol. 209, 287–302 (2001)

    Article  Google Scholar 

  32. Kuznetsov, Y.A., Piccardi, C.: Bifurcation analysis of periodic SEIR and SIR epidemic models. J. Math. Biol. 32, 109–121 (1994)

    MathSciNet  MATH  Google Scholar 

  33. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. New York: Springer-Verlag, 1995

  34. Lauwerier, H.A., Metz, J.A.J.: Hopf Bifurcation in Host-Parasitoid Models. IMA Jl. Math. Med. Biol. 3, 191–210 (1986)

    MATH  Google Scholar 

  35. Lauwerier, H.A.: Two-dimensional iterative maps. In: A.V. Holden, (ed.), Chaos, Manchester, UK: Manchester University Press, 1986

  36. Leslie, P.H.: On the use of matrices in certain population mathematics. Biometrika 33, 213–245 (1945)

    Google Scholar 

  37. Liebhold, A., Elkinton, J., Williams, D., Muzika, R.M.: What causes outbreaks of the gypsy moth in North America? Popul. Ecol. 42, 257–266 (2000)

    Google Scholar 

  38. Lima, M., Brazeiro, A., Defeo, O.: Population dynamics of the yellow clam Mesodesma mactroides: recruitment variability, density-dependence and stochastic processes. Mar. Ecol. Prog. Ser. 207, 97–108 (2000)

    Google Scholar 

  39. Maron, J.L., Harrison, S., Greaves, M.: Origin of an insect outbreak: escape in space or time from natural enemies? Oecologia 126, 595–602 (2001)

    Google Scholar 

  40. Marrow, P., Dieckmann, U., Law, R.: Evolutionary Dynamics of Predator-Prey Systems: An Ecological Perspective. J. Math. Biol. 34, 556–578 (1996)

    Article  MATH  Google Scholar 

  41. May, R.M.: Biological populations with nonoverlapping generations: stable points, stable cycles and chaos. Science 186, 645–647 (1974)

    CAS  PubMed  Google Scholar 

  42. May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    CAS  PubMed  Google Scholar 

  43. McCauley, E., Nisbet, R.M., Murdoch, W.W., de Roos, A.M., Gurney, W.S.C.: Large-amplitude cycles of Daphnia and its algal prey in enriched environments. Nature 402, 653–656 (1999)

    Article  Google Scholar 

  44. Murdoch, W.W., Kendall, B.E., Nisbet, R.M., Briggs, C.J., McCauley, E., Bolser, R.: Single-species models for many-species food webs. Nature 417, 541–543 (2002)

    Article  Google Scholar 

  45. Myers, J.H.: Can a general hypothesis explain population cycles of forest Lepidoptera? Adv. Ecol. Res. 18, 179–242 (1988)

    Google Scholar 

  46. Nagashima, H., Baba, Y.: Introduction to Chaos. Bristol, UK: Institute of Physics Publishing, 1999

  47. Neimark, Y.I.: On some cases of periodic motion depending on parameters. Dokl. Akad. Nauk SSSR 129, 736–739 (1959)

    MATH  Google Scholar 

  48. Neubert, M.G., Caswell, H.: Density-dependent vital rates and their population dynamic consequences. J. Math. Biol. 41, 103–121 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. Nicholson, A.J., Bailey, V.A.: The balance of animal populations. Proc. Zoolog. Soc. London 3, 551–598 (1935)

    Google Scholar 

  50. Nisbet, R.M., Onyiah, L.C.: Population dynamic consequences of competition within and between age classes. J. Math. Biol. 32, 329–344 (1994)

    MATH  Google Scholar 

  51. Ricker, W.E.: Stock and Recruitment. J. Fish. Res. Board Can. 11, 559–623 (1954)

    Google Scholar 

  52. Rohani, P., Wearing, H.J., Cameron, T., Sait, S.M.: Natural enemy specialization and the period of population cycles. Ecol. Lett. 6, 381–384 (2003)

    Google Scholar 

  53. Royama, T.: Analytical population dynamics. London: Chapman and Hall, 1992

  54. Sacker, R.S.: On invariant surfaces and bifurcations of periodic solutions of ordinary differential equations. Commun. Pure and Appl. Math. 18, 717–732 (1965)

    MATH  Google Scholar 

  55. Stenseth, N.C., Falck, W., Bjornstad, O.N., Krebs, C.J.: Population regulation in snowshoe hare and Canadian lynx: Asymmetric food web configurations between hare and lynx. Proc. Natl. Acad. Sci. USA 94, 5147–5152 (1997)

    Google Scholar 

  56. Tanhuanpää, M., Ruohomäki, K., Turchin, P., Ayres, M.P., Bylund, H., Kaitaniemi, P., Tammaru, T., Haukioja, E.: Population Cycles of the Autumnal Moth in Fennoscandia. In: Berryman, A. (ed.), Population cycles, Oxford, UK: Oxford University Press, 2002

  57. Tuljapurkar, S.: Population Dynamics in Variable Environments. Lecture Notes in Biomathematics, vol. 85, New York: Springer-Verlag, 1990

  58. Turchin, P.: Rarity of density dependence or population regulation with lags? Nature 344, 660–663 (1990)

    Google Scholar 

  59. Turchin, P., Briggs, C.J., Ellner, S.P., Fischlin, A., Kendall, B.E., McCauley, E., Murdoch, W.W., Wood, S.N.: Population cycles of the Larch Budmoth in Switzerland. In: Berryman, A. (ed.), Population cycles, Oxford, UK: Oxford University Press, 2002

  60. Wolfram, S.: The Mathematica Book. Cambridge, UK: Cambridge University Press, 1999

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Greenman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

V. Greenman, J., Benton, T. Large amplification in stage-structured models: Arnol’d tongues revisited. J. Math. Biol. 48, 647–671 (2004). https://doi.org/10.1007/s00285-004-0264-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-004-0264-8

Keywords

Navigation