Journal of Mathematical Biology

, Volume 47, Issue 3, pp 235–248 | Cite as

On the concept of attractor for community-dynamical processes II: the case of structured populations

  • Mats GyllenbergEmail author
  • F.J.A. Jacobs
  • J.A.J. Metz


In Part I of this paper Jacobs and Metz (2003) extended the concept of the Conley-Ruelle, or chain, attractor in a way relevant to unstructured community ecological models. Their modified theory incorporated the facts that certain parts of the boundary of the state space correspond to the situation of at least one species being extinct and that an extinct species can not be rescued by noise. In this part we extend the theory to communities of physiologically structured populations. One difference between the structured and unstructured cases is that a structured population may be doomed to extinction and not rescuable by any biologically relevant noise before actual extinction has taken place. Another difference is that in the structured case we have to use different topologies to define continuity of orbits and to measure noise. Biologically meaningful noise is furthermore related to the linear structure of the community state space. The construction of extinction preserving chain attractors developed in this paper takes all these points into account.


 Environmental noise Pseudoorbit Chain attractor Weak-topology Physiologically structured populations Community dynamics Extinction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clément, Ph., Diekmann, O., Gyllenberg, M., Heijmans, H.J.A.M., Thieme, H.R.: Perturbation theory for dual semigroups IV. The intertwining formula and the canonical pairing., in Trends in semigroup theory and applications, Ph. Clément, S. Invernizzi, E. Mitidieri, I.I. Vrabie (Eds.), Marcel Dekker. 1989, pp. 95–116Google Scholar
  2. 2.
    Conley, Ch.: Isolated invariant sets and the Morse index. CBMS Regional Conference, Ser. 38, American Mathematical Society, Providence, Rhode Island. 1978Google Scholar
  3. 3.
    Dieckmann, U., Law, R.: The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34, 579–612 (1996)Google Scholar
  4. 4.
    Diekmann, O., Gyllenberg, M., Metz, J.A.J., Thieme, H.R.: On the formulation and analysis of general deterministic structured population models: I Linear theory. J. Math. Biol. 36, 349–388 (1998)Google Scholar
  5. 5.
    Diekmann, O., Gyllenberg, M., Huang, H., Kirkilionis, M., Metz, J.A.J., Thieme, H.R.: On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory, J. Math. Biol. 43, 157–189 (2001)Google Scholar
  6. 6.
    Diekmann, O., Gyllenberg, M., Metz, J.A.J.: Steady-state analysis of structured population models. Theoretical Population Biology 63, 309–338 (2003)CrossRefGoogle Scholar
  7. 7.
    Geritz, S.A.H., Gyllenberg, M., Jacobs, F.J.A., Parvinen, K.: Invasion dynamics and attractor inheritance, J. Math. Biol. 44, 548–560 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Geritz, S.A.H., Metz, J.A.J., Kisdi, É., Meszéna, G.: The dynamics of adaptation and evolutionary branching. Phys. Rev. Letters 78, 2024–2027 (1997)CrossRefGoogle Scholar
  9. 9.
    Geritz, S.A.H., Kisdi, É., Meszéna, G., Metz, J.A.J.: Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12, 35–57 (1998)CrossRefGoogle Scholar
  10. 10.
    Hurley, M.: Attractors: persistence, and density of their basins. Trans. Amer. Math. Soc. 269, 247–271 (1982)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Jacobs, F.J.A., Metz, J.A.J.: On the Concept of Attractor in Community-Dynamical Processes. I: the Case of Unstructured Populations, J. Math. Biol., 2003; Doi 10.1007/s00285-003-0204-zGoogle Scholar
  12. 12.
    Kelley, J.L.: General Topology, Van Nostrand, Toronto, 1955Google Scholar
  13. 13.
    Kelley, J.L., Namioka, I.: Linear Topological Spaces, Van Nostrand, Princeton, N.J. 1963Google Scholar
  14. 14.
    Metz, J.A.J., Nisbet, R.M., Geritz, S.A.H.: How should we define ``fitness'' for general ecological scenarios? TREE 7, 198–202 (1992)Google Scholar
  15. 15.
    Metz, J.A.J., Geritz, S.A.H., Meszéna, G., Jacobs, F.J.A., van Heerwaarden, J.S.: Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In: Stochastic and spatial structures of dynamical systems, S.J. van Strien, S.M. Verduyn Lunel (Eds.), North-Holland, Amsterdam, 1996, pp. 183–231Google Scholar
  16. 16.
    Mylius, S.D., Diekmann, O.: The resident strikes back: Invader-induced switching of resident attractor. J. Theoret. Biol. 211, 297–311 (2001)CrossRefGoogle Scholar
  17. 17.
    Ruelle, D.: Small random perturbations of dynamical systems and the definition of attractors. Commun. Math. Phys. 82 137–151 (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TurkuTurkuFinland
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleU.S.A
  3. 3.Institute for Evolutionary and Ecological SciencesLeiden University, The Netherlands and Adaptive Dynamics Network, IIASA, 2361 Laxenburg, Austria.GP LeidenThe Netherlands

Personalised recommendations