Advertisement

Journal of Mathematical Biology

, Volume 47, Issue 3, pp 199–221 | Cite as

Nuclear androdioecy and gynodioecy

  • J.A. Vargas
  • R.F. del CastilloEmail author
Article

Abstract.

We formulate two single-locus Mendelian models, one for androdioecy and the other one for gynodioecy, each with 3 parameters: t the male (female) fertility rate of males (females) to hermaphrodites, s the fraction of the progeny derived from selfing; and g the fitness of inbreeders. Each model is expressed as a transformation of a 3 dimensional zygotic algebra, which we interpret as a rational map of the projective plane. We then study the dynamics for the evolution of each reproductive system; and compare our results with similar published models. In this process, we introduce a general concept of fitness and list some of its properties, obtaining a relative measure of population growth, computable as an eigenvalue of a mixed mating transformation for a population in equilibrium. Our results concur with previous models of the evolution of androdioecy and gynodioecy regarding the threshold values above which the sexual polymophism is stable, although the previous models assume constant the fraction of ovules from hermaphrodites that are self pollinated, while we assume constant the fraction of the progeny derived from selfing. A stable androdioecy requires more stringent conditions than a stable gynodioecy if the amount of pollen used for selfing is negligible in comparison with the total amount of pollen produced by hermaphrodites. Otherwise, both models are identical. We show explicitly that the genotype fitnesses depend linearly on their frequencies. Simulations show that any population not at equilibrium always converges to the equilibrium point of higher fitness. However, at intermediate steps, the fitness function occasionally decreases.

Keywords

 Androdioecy Gynodioecy Fitness Pollen discounting Rational map Projective plane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Byers, D.L., Waller, D.M.: Do plant populations purge their genetic load? effects of population size and mating history on inbreeding depression. Ann. Rev. of Ecology and Systematics 30, 479–513 (1999)Google Scholar
  2. 2.
    Caswell, H.: Life cycle models for plants, Lectures on Mathematics in the Life Sciences 18, Edited by L.G. Gross, R.M. Miura, Amer. Math. Soc. 1986Google Scholar
  3. 3.
    Charlesworth, B., Charlesworth, D.: A model for the evolution of dioecy and gynodioecy. Amer. Natur. 112, 975–997 (1978)CrossRefGoogle Scholar
  4. 4.
    Charlesworth, D., Charlesworth, B.: Population genetics of partial male-sterility and the evolution of monoeocy and dioecy. Heredity (2) 41, 137–153 (1978)Google Scholar
  5. 5.
    Charlesworth, D.: Theories of the evolutoion of dioecy. In: M.A. Geber, T.E. Dawson, L.F. Delph, Eds. Gender and sexual dimorphism in flowering plants. Springer-Verlag, Berlin-Heidelberg, 1999, pp. 33–60Google Scholar
  6. 6.
    Cruden, R.W.: Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31, 32–46 (1977)Google Scholar
  7. 7.
    Damgaard, C., Abbott, R.J.: Positive correlations between selfing rate and pollen-ovule ratio within plant populations. Evolution 49, 214–217 (1995)Google Scholar
  8. 8.
    Etherington, I.M.H.: Genetic algebras. Proc. Roy. Soc. Edinburgh 59, 242–258 (1939)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Galán, F.: Teorí a genética del sexo zigótico en el caso de Ecbalium elaterium. Revista de Biologí a 4, 187–220 (1964)Google Scholar
  10. 10.
    Grant, V.: Genetics of Flowering Plants. Columbia University, New York, 1975Google Scholar
  11. 11.
    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics 52, Springer-Verlag, New York, 1977Google Scholar
  12. 12.
    Hirsch, M., Smale, S.: Differential Equations, Dynamical Systems and Linear Algebra. Academic Press, New York, San Francisco, London, 1974Google Scholar
  13. 13.
    Holgate, P.: Selfing in genetic algebras. J. Math. Biol. 6, 197–206 (1978)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Holsinger, K.E., Feldman, M.W., Christiansen, F.B.: The evolution of self-fertilization in plants. Amer. Natur. 124, 446–453 (1984)CrossRefGoogle Scholar
  15. 15.
    Lande, R.: A quantitative genetic theory of life history evolution. Ecology 63, 607–615 (1982)Google Scholar
  16. 16.
    Lewis, D.: Male sterility in natural populations of hermaphrodite plants. New Phytol. 40, 56–63 (1941)Google Scholar
  17. 17.
    Lloyd, D.G.: Theoretical sex ratios of dioecious and gynodioecious angiosperms. Heredity 32, 11–34 (1974)Google Scholar
  18. 18.
    Lloyd, D.G.: The genetic contribution of individual males and females in dioecious and gynodioecious angiosperms. Heredity 32, 45–51 (1974)Google Scholar
  19. 19.
    Lloyd, D.G.: The maintenance of gynodioecy and androdioecy in angiosperms. Genetica 45, 325–329 (1975)Google Scholar
  20. 20.
    Macaulay 2 is a software system for research in algebraic geometry by Daniel R. Grayson and Michael E. Stillman, available at www.math.uiuc.edu/Macaulay2.Google Scholar
  21. 21.
    Pannell, J.: The maintenance of gynodioecy and androdioecy in a metapopulation. Evolution 51, 10–20 (1997)Google Scholar
  22. 22.
    Reed, M.L.: Algebraic structure of genetic inheritance. Bull. Amer. Math. Soc. 34, 107–130 (1997)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Richards, A.J.: Plant Breeding Systems. George Allen & Unwin, London, 1986Google Scholar
  24. 24.
    Ross, M.D., Weir, B.S.: Maintenance of male sterility in plant populations III. Mixed selfing and random mating. Heredity 35, 21–29 (1975)Google Scholar
  25. 25.
    Ross, M.D., Weir, B.S.: Maintenance of males and females in hermaphrodite populations and the evolution of dioecy. Evolution 30, 425–441 (1976)Google Scholar
  26. 26.
    Sassaman, C., Weeks, S.C.: The genetics of sex determination in the conchostracan shrimp Eulimnadia texana. Amer. Natur. 141, 314–328 (1993)CrossRefGoogle Scholar
  27. 27.
    Schemske, D.W., Lande, R.: The evolution of self-fertilization and inbreeding depression in plants II. Empirical observations. Evolution 39, 41–52 (1985)Google Scholar
  28. 28.
    Sun, M., Ganders, F.R.: Mixed Mating Systems in Hawaiian Bidens (Asteraceæ). Evolution 42, 516–527 (1988)Google Scholar
  29. 29.
    Takebayashi, N., Delph, L.F.: An association between a trait and inbreeding depression. Evolution 54, 840–846 (2000)Google Scholar
  30. 30.
    Vogler, D.W., Kalisz, S.: Sex among the flowers: The distribution of plant mating systems. Evolution 55, 202–204 (2001)Google Scholar
  31. 31.
    Weeks, S.C., Crosser, B.R., Bennett, R., Gray, M., Zucker, N.: Maintenance of androdioecy in the freshwater shrimp Eulimnadia texana: estimates of inbreeding depression in two populations. Evolution 54, 878–887 (2000)Google Scholar
  32. 32.
    Wörz-Busekros, A.: Algebras in Genetics, Lecture Notes in Biomathematics 36, Springer-Verlag, New York, 1980Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Independent scholarOaxaca
  2. 2.CIIDIR IPN OaxacaOaxaca

Personalised recommendations