Skip to main content
Log in

The aggregation-mediated conjugation system of Bacillus thuringiensis subsp. israelensis: Host range and kinetics of transfer

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The aggregation-mediated conjugation system in Bacillus thuringiensis subsp. israelensis encoded on the plasmid pXO16 is characterized by the formation of aggregates when Agr+ and Agr- cells are socialized in exponential growth. Using the aggregation phenotypes, we have identified potential recipients of the aggregation-plasmid pXO16 among Bacillus cereus, Bacillus subtilis, Bacillus megaterium, Bacillus sphaericus, and 24 subspecies of B. thuringiensis. We found 14 Agr- strains, i.e., potential recipients of the aggregation system encoded by plasmid pXO16. Five strains contained a conjugative apparatus of their own and were excluded from further examinations. To monitor the transfer of plasmid pXO16, we constructed a transposon insertion of the plasmid with Tn5401. The study of the plasmid transfer of pXO16::Tn5401 indicated the secretion of bacteriocins from both donor strain and recipient strains. Only one out of the nine strains examined was unable to receive the aggregation-plasmid pXO16 and express the aggregation phenotype and the conjugative abilities. It was found that the transfer of plasmid pXO16 to Bacillus thuringiensis subsp. israelensis Agr- strains was 100%. All recipients had acquired the aggregation-plasmid pXO16 and converted to the Agr+ phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Andrup L, Damgaard J, Wassermann K (1993) Mobilization of small plasmids in Bacillus thuringiensis subsp. israelensis is accompanied by specific aggregation. J Bacteriol 175: 6530–6536

    PubMed  CAS  Google Scholar 

  2. Andrup L, Bendixen HH, Jensen GB (1995) Mobilization of Bacillus thuringiensis plasmid pTX14-3. Plasmid 33: 159–167

    Article  PubMed  CAS  Google Scholar 

  3. Andrup L, Jensen GB, Wilcks A, Smidt L (1996) Mobilization of “non-mobilizable” plasmids by the aggregation-mediated conjugation system of Bacillus thuringiensis. submitted

  4. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1995) Current protocols in molecular biology. Brooklyn, N.Y.: John Wiley & Sons, Inc.

    Google Scholar 

  5. Battisti L, Green BD, Thorne CB (1985) Mating system for transfer of plasmids among Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. J Bacteriol 162: 543–550

    PubMed  CAS  Google Scholar 

  6. Baum JA (1994) Tn5401, a new class II transposable element from Bacillus thuringiensis. J Bacteriol 176: 2835–2845

    PubMed  CAS  Google Scholar 

  7. Bernhard K, Schrempf H, Goebel W (1978) Bacteriocin and antibiotic resistance plasmids in Bacillus cereus and Bacillus subtilis. J Bacteriol 133: 897–903

    PubMed  CAS  Google Scholar 

  8. Bone EJ, Ellar DJ (1989) Transformation of Bacillus thuringiensis by electroporation. FEMS Microbiol Lett 58: 171–178

    Article  CAS  Google Scholar 

  9. Bora RS, Murty MG, Shenbagarathai R, Sekar V (1994) Introduction of a lepidopteran-specific insecticidal crystal protein gene of Bacillus thuringiensis subsp. kurstaki by conjugal transfer into a Bacillus megaterium strain that persists in the cotton phyllosphere. Appl Environ Microbiol 60: 214–222

    PubMed  CAS  Google Scholar 

  10. Carlson CR, Caugant DA, Kolstø AB (1994) Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl Environ Microbiol 60: 1719–1725

    PubMed  CAS  Google Scholar 

  11. Chapman JS, Carlton BC (1985) Conjugal plasmid transfer in Bacillus thuringiensis. In: Helinski DR, Cohen SN, Clewell DB, Jackson DA, Hollaender A (eds) Plasmids in bacteria. New York and London: Plenum Press, pp 453–467

    Google Scholar 

  12. Clewell DB (1993) Bacterial sex pheromone-induced plasmid transfer. Cell 73: 9–12

    Article  PubMed  CAS  Google Scholar 

  13. de Barjac H, Lajudie J (1974) Mise en évidence de facteurs antagonistes du type des bactériocines chez Bacillus thuringiensis. Ann Microbiol Paris 125: 529–537

    PubMed  Google Scholar 

  14. Dunny GM (1990) Genetic function and cell-cell interactions in the pheromone-inducible plasmid transfer system of Enterococcus faecalis. Mol Microbiol 4: 689–696

    Article  PubMed  CAS  Google Scholar 

  15. Dunny GM, Brown BL, Clewell DB (1978) Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc Natl Acad Sci USA 75: 3479–3483

    Article  PubMed  CAS  Google Scholar 

  16. Favret ME, Yousten AA (1989) Thuricin: the bacteriocin produced by Bacillus thuringiensis. J Invertebr Pathol53: 206–216

    Article  PubMed  CAS  Google Scholar 

  17. Fikes JD, Crabtree BL, Barridge BD (1983) Studies on the mode of action of a bacteriocin produced by Bacillus stearothermophilus. Can J Microbiol 29: 1576–1582

    PubMed  CAS  Google Scholar 

  18. Gasson MJ (1990) In vivo genetic systems in lactic acid bacteria. FEMS Microbiol Rev 87: 43–60

    Article  CAS  Google Scholar 

  19. Goldberg LH, Margalit J (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens. Mosquito News 37: 355–358

    Google Scholar 

  20. Gonzalez JM, Jr, Carlton BC (1982) Plasmid transfer in Bacillus thuringiensis. In: Streips UN, Goodgal SH, Guild WR, Wilson GA (eds) Genetic exchange: a celebration and a new generation. New York: Marcel Dekker, pp 85–95

    Google Scholar 

  21. Gonzalez JM, Jr, Carlton BC (1984) A large transmissible plasmid is required for crystal toxin production in Bacillus thuringiensis variety israelensis. Plasmid 11: 28–38

    Article  PubMed  CAS  Google Scholar 

  22. Gonzalez JM, Jr, Brown BJ, Carlton BC (1982) Transfer of Bacillus thuringiensis plasmids coding for δ-endotoxin among strains of Bacillus thuringiensis and Bacillus cereus. Proc Natl Acad Sci USA 79: 6951–6955

    Article  PubMed  CAS  Google Scholar 

  23. Goze A (1972) Thuricines et cérécines moléculaires. C R Soc Biol Paris 166: 200–204

    PubMed  CAS  Google Scholar 

  24. Guiney DG (1993) Broad host range conjugative and mobilizable plasmids in gram-negative bacteria. In: Clewell DB (ed) Bacterial conjugation. New York: Plenum Press, pp 75–103

    Google Scholar 

  25. Harrington LC, Rogerson AC (1990) The F pilus of Escherichia coli appears to support stable DNA transfer in the absence of wall-to-wall contact between cells. J Bacteriol 172: 7263–7264

    PubMed  CAS  Google Scholar 

  26. Hegna IK, Karlstrom ES, Lopez R, Kristensen T, Kolsto AB (1992) A type-III DNA restriction and modification system in Bacillus census? Gene 114: 149–150

    Article  PubMed  CAS  Google Scholar 

  27. Heinemann JA, Sprague GF, Jr (1989) Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340: 205–209

    Article  PubMed  CAS  Google Scholar 

  28. Jarrett P, Stephenson M (1990) Plasmid transfer between strains of Bacillus thuringiensis infecting Galleria mellonella and Spodoptera littoralis. Appl Environ Microbiol 56: 1608–1614

    PubMed  CAS  Google Scholar 

  29. Jensen GB, Wilcks A, Petersen SS, Damgaard J, Baum JA, Andrup L (1995) The genetic basis of the aggregation system in Bacillus thuringiensis subsp. israelensis is located on the large conjugative plasmid pXO16. J Bacteriol 177: 2914–2917

    PubMed  CAS  Google Scholar 

  30. Krieg A (1970) Thuricin, a bacteriocin produced by Bacillus thuringiensis. J Invertebr Pathol 15: 291

    Article  Google Scholar 

  31. Landén R, Bryne M, Abdel-Hameed A (1994) Distribution of Bacillus thuringiensis strains in Southern Sweden. World J Microbiol Biotechnol 10: 45–50

    Article  Google Scholar 

  32. Lanka E, Wilkins BM (1995) DNA processing reactions in bacterial conjugation. Annu Rev Biochem 64: 141–169

    Article  PubMed  CAS  Google Scholar 

  33. Lederberg J, Tatum EL (1946) Gene recombination in Escherichia coli. Nature 158: 558

    Article  Google Scholar 

  34. Naclerio G, Ricca E, Sacco M, Defelice M (1993) Antimicrobial activity of a newly identified bacteriocin of Bacillus cereus. Appl Environ Microbiol 59: 4313–4316

    PubMed  CAS  Google Scholar 

  35. Nakamura LK (1994) DNA relatedness among Bacillus thuringiensis serovars. Int J Syst Bacteriol 44: 125–129

    Article  PubMed  CAS  Google Scholar 

  36. Novotny JF, Jr, Perry JJ (1992) Characterization of bacteriocins from two strains of Bacillus thermoleovorans, a thermophilic hydrocarbon-utilizing species. Appl Environ Microbiol 58: 2393–2396

    PubMed  CAS  Google Scholar 

  37. Ozawa K, Iwahana H (1986) Involvement of a transmissible plasmid in heat-stable exotoxin and delta-endotoxin in Bacillus thuringiensis subspecies darmstadiensis. Curr Microbiol 13: 337–340

    Article  CAS  Google Scholar 

  38. Priest FG, Kaji DA, Rosato YB, Canhos VP (1994) Characterization of Bacillus thuringiensis and related bacteria by ribosomal RNA gene restriction fragment length polymorphisms. Microbiology 140: 1015–1022

    Article  PubMed  CAS  Google Scholar 

  39. Reddy A, Battisti L, Thorne CB (1987) Identification of selftransmissible plasmids in four Bacillus thuringiensis subspecies. J Bacteriol 169: 5263–5270

    PubMed  CAS  Google Scholar 

  40. Reniero R, Cocconcelli P, Bottazzi V, Morelli L (1992) High frequency of conjugation in Lactobacillus mediated by an aggregation-promoting factor. J Gen Microbiol 138: 763–768

    CAS  Google Scholar 

  41. Rostas K, Dobritsa SV, Dobritsa AP, Koncz C, Alfoldi L (1980) Megacinogenic plasmid from Bacillus megaterium 216. Mol Gen Genet 180: 323–329

    Article  PubMed  CAS  Google Scholar 

  42. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press

    Google Scholar 

  43. Selinger LB, McGregor NF, Khachatourians GG, Hynes MF (1990) Mobilization of closely related plasmids pUB110 and pBC16 by Bacillus plasmid pXO503 requires trans-acting open reading frameβ. J Bacteriol 172: 3290–3297

    PubMed  CAS  Google Scholar 

  44. Shivarova N (1989) Raising the efficiency of conjugative transfer in Bacillus thuringiensis. C R Acad 42: 83–85

    CAS  Google Scholar 

  45. Stahl S (1989) A new bacteriocinogenic activity: megacin BII encoded by plasmid pSE 203 in strains of Bacillus megaterium. Arch Microbiol 151: 159–165

    Article  PubMed  CAS  Google Scholar 

  46. Stahl SR (1991) Plasmids in Bacillus stearothermophilus coding for bacteriocinogeny and temperature resistance. Plasmid 26: 94–107

    Article  PubMed  CAS  Google Scholar 

  47. Stoffels G, Nissen Meyer J, Gudmundsdottir A, Sletten K, Holo H, Nes IF (1992) Purification and characterization of a new bacteriocin isolated from a Carnobacterium sp. Appl Environ Microbiol 58: 1417–1422

    PubMed  CAS  Google Scholar 

  48. Trieu-Cuot P, Carlier C, Courvalin P (1988) Conjugative plasmid transfer from Enterococcus faecalis to Escherichia coli. J Bacteriol 170: 4388–4391

    PubMed  CAS  Google Scholar 

  49. Trieu-Cuot P, Derlot E, Courvalin P (1993) Enhanced conjugative transfer of plasmid DNA from Escherichia coli to Staphylococcus aureus and Listeria monocytogenes. FEMS Microbiol Lett109: 19–24

    Article  PubMed  CAS  Google Scholar 

  50. Ueda K, Ohba M, Aizawa K (1991) Serogrouping of Bacillus thuringiensis by extracellular heat-stable somatic antigens. Syst Appl Microbiol 14: 291–294

    Google Scholar 

  51. von Tersch MA, Carlton BC (1983) Bacteriocin from Bacillus megaterium ATCC 19213: comparative studies with megacin A-216. J Bacteriol 155: 866–871

    Google Scholar 

  52. Wirth R (1994) The sex pheromone system of Enterococcus faecalis—more than just a plasmid-collection mechanism? Eur J Biochem 222: 235–246

    Article  PubMed  CAS  Google Scholar 

  53. Wiwat C, Panbangred W, Bhumiratana A (1990) Transfer of plasmids and chromosomal genes among subspecies of Bacillus thuringiensis. J Ind Microbiol 6: 19–27

    Article  CAS  Google Scholar 

  54. Wiwat C, Panbangred W, Mongkolsuk S, Pantuwatana S, Bhumiratana A (1995) Inhibition of a conjugation-like gene transfer process in Bacillus thuringiensis subsp. israelensis by the anti-S-layer protein antibody. Curr Microbiol 30: 69–75

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, G.B., Andrup, L., Wilcks, A. et al. The aggregation-mediated conjugation system of Bacillus thuringiensis subsp. israelensis: Host range and kinetics of transfer. Current Microbiology 33, 228–236 (1996). https://doi.org/10.1007/s002849900105

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002849900105

Keywords

Navigation