Skip to main content
Log in

Microbial Consortia: Promising Tool as Plant Bioinoculants for Agricultural Sustainability

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In the present scenario, growing population demands more food, resulting in the need for sustainable agriculture. Numerous approaches are explored in response to dangers and obstacles to sustainable agriculture. A viable approach is to be exploiting microbial consortium, which generate diverse biostimulants with growth-promoting characteristics for plants. These bioinoculants play an indispensable role in optimizing nutrient uptake efficiency mitigating environmental stress. Plant productivity is mostly determined by the microbial associations that exist at the rhizospheric region of plants. The engineered consortium with multifunctional attributes can be effectively employed to improve crop growth efficacy. A number of approaches have been employed to identify the efficient consortia for plant growth and enhanced crop productivity. Various plant growth-promoting (PGP) microbes with host growth-supporting characteristics were investigated to see if they might work cohesively and provide a cumulative effect for improved growth and crop yield. The effective microbial consortia should be assessed using compatibility tests, pot experimentation techniques, generation time, a novel and quick plant bioassay, and sensitivity to external stimuli (temperature, pH). The mixture of two or more microbial strains found in the root microbiome stimulates plant growth and development. The present review deals with mechanism, formulation, inoculation process, commercialization, and applications of microbial consortia as plant bioinoculants for agricultural sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACC:

1-aminocyclopropane-1-carboxylate

K:

Potassium

N:

Nitrogen

P:

Phosphorus

PGP:

Plant growth promotion

PGPR:

Plant growth-promoting rhizobacteria

PSMs:

Phosphorus-solubilizing microbes

Zn:

Zinc

References

  1. Kumar M, Ahmad S, Singh R (2022) Plant growth promoting microbes: Diverse roles for sustainable and ecofriendly agriculture. Energy Nexus 7:100133. https://doi.org/10.1016/j.nexus.2022.100133

    Article  Google Scholar 

  2. Msimbira LA, Smith DL (2020) The roles of plant growth promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses. Front Sustain Food Syst 4:106. https://doi.org/10.3389/fsufs.2020.00106

    Article  Google Scholar 

  3. Kochhar S, Gujral SK (2020) Plant physiology: theory and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Rai PK, Singh M, Anand K, Saurabhj S, Kaur T, Kour D et al (2020) Role and potential applications of plant growth promotion rhizobacteria for sustainable agriculture. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 49–60. https://doi.org/10.1016/B978-0-12-820526-6.00004-X

    Chapter  Google Scholar 

  5. Diwan D, Rashid MM, Vaishnav A (2022) Current understanding of plant-microbe interaction through the lenses of multi-omics approaches and their benefits in sustainable agriculture. Microbiol Res 265:127180. https://doi.org/10.1016/j.micres.2022.127180

    Article  CAS  PubMed  Google Scholar 

  6. Niu B, Wang W, Yuan Z, Sederoff RR, Sederoff H, Chiang VL, Borriss R (2020) Microbial interactions within multiple-strain biological control agents impact soil-borne plant disease. Front Microbiol 11:585404. https://doi.org/10.3389/fmicb.2020.585404

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sunar K, Das K, Rai AK, Gurung SA (2023) Beneficial microbial consortia and their role in sustainable agriculture under climate change conditions. In: Mathur P, Kapoor R, Roy S (eds) Microbial symbionts and plant health: trends and applications for changing climate. Rhizosphere biology. Springer, Singapore. https://doi.org/10.1007/978-981-99-0030-5_3

    Chapter  Google Scholar 

  8. Wu D, Wang W, Yao Y, Li H, Wang Q, Niu B (2023) Microbial interactions within beneficial consortia promote soil health. Sc Total Environ 900:165801. https://doi.org/10.1016/j.scitotenv.2023.165801

    Article  CAS  Google Scholar 

  9. Negi R, Sharma B, Kumar S, Chaubey KK, Kaur T, Devi R, Yadav A, Kour D, Yadav AN (2023) Plant endophytes: unveiling hidden applications toward agro-environment sustainability. Folia Microbiol 1–26. https://doi.org/10.1007/s12223-023-01092-6

  10. Negi R, Sharma B, Kaur S, Kaur T, Khan SS, Kumar S, Ramniwas S, Rustagi S, Singh S, Rai AK (2023) Microbial antagonists: diversity, formulation and applications for management of pest–pathogens. Egypt J Biol Pest Control 33:105. https://doi.org/10.1186/s41938-023-00748-2

    Article  Google Scholar 

  11. Kour D, Khan SS, Kour H, Kaur T, Devi R, Rai AK, Yadav AN (2024) ACC deaminase producing phytomicrobiomes for amelioration of abiotic stresses in plants for agricultural sustainability. J Plant Growth Regul 43:963–985. https://doi.org/10.1007/s00344-023-11163-0

    Article  CAS  Google Scholar 

  12. Divjot K, Rana KL, Tanvir K, Yadav N, Yadav AN, Kumar M, Kumar V, Dhaliwal HS, Saxena AK (2021) Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and-mobilizing microbes: a review. Pedosphere 31:43–75. https://doi.org/10.1016/S1002-0160(20)60057-1

    Article  CAS  Google Scholar 

  13. Rana KL, Kour D, Kaur T, Devi R, Yadav A, Yadav AN (2021) Bioprospecting of endophytic bacteria from the Indian Himalayas and their role in plant growth promotion of maize (Zea mays L.). J Appl Biol Biotechnol 9:41–50. https://doi.org/10.7324/JABB.2021.9306

    Article  CAS  Google Scholar 

  14. Devi R, Kaur T, Kour D, Yadav A, Yadav AN, Suman A, Ahluwalia AS, Saxena AK (2022) Minerals solubilizing and mobilizing microbiomes: a sustainable approach for managing minerals’ deficiency in agricultural soil. J Appl Microbiol 133:1245–1272. https://doi.org/10.1111/jam.15627

    Article  PubMed  Google Scholar 

  15. Sandhu N, Sethi M, Kumar A, Dang D, Singh J, Chhuneja P (2021) Biochemical and genetic approaches improving nitrogen use efficiency in cereal crops: a review. Front Plant Sci 12:657629. https://doi.org/10.3389/fpls.2021.657629

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20. https://doi.org/10.1016/j.jksus.2013.05.001

    Article  Google Scholar 

  17. Kim J, Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochemistry 33:389–397. https://doi.org/10.1021/bi00168a001

    Article  CAS  PubMed  Google Scholar 

  18. Orme-Johnson WH (1997) Biochemistry of nitrogenase. In: Hollaender A, Burris RH, Day PR (eds) Genetic engineering for nitrogen fixation. Basic life sciences. Springer, Boston. https://doi.org/10.1007/978-1-4684-0880-5_20

    Chapter  Google Scholar 

  19. Negi R, Kaur T, Devi R, Kour D, Yadav AN (2022) Assessment of nitrogen-fixing endophytic and mineral solubilizing rhizospheric bacteria as multifunctional microbial consortium for growth promotion of wheat and wild wheat relative Aegilops kotschyi. Heliyon 8:e12579. https://doi.org/10.1016/j.heliyon.2022.e12579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaur T, Devi R, Kumar S, Sheikh I, Kour D, Yadav AN (2022) Microbial consortium with nitrogen fixing and mineral solubilizing attributes for growth of barley (Hordeum vulgare L.). Heliyon 8:e09326. https://doi.org/10.1016/j.heliyon.2022.e09326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kour D, Kaur T, Devi R, Chaubey KK, Yadav AN (2023) Co-inoculation of nitrogen fixing and potassium solubilizing Acinetobacter sp. for growth promotion of onion (Allium cepa). Biologia 78:2635–2641. https://doi.org/10.1007/s11756-023-01412-8

    Article  CAS  Google Scholar 

  22. Zhu J, Li M, Whelan M (2018) Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Sci Total Environ 612:522–537. https://doi.org/10.1016/j.scitotenv.2017.08.095

    Article  CAS  PubMed  Google Scholar 

  23. Huang J, Xu C-c, Ridoutt BG, Wang X-c, Ren P-a (2017) Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J Clean Prod 159:171–179. https://doi.org/10.1016/j.jclepro.2017.05.008

    Article  Google Scholar 

  24. Rawat P, Das S, Shankhdhar D, Shankhdhar SC (2021) Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. J Soil Sci Plant Nutr 21:49–68. https://doi.org/10.1007/s42729-020-00342-7

    Article  CAS  Google Scholar 

  25. Kishore N, Pindi PK, Ram R (2015) Phosphate-solubilizing microorganisms: a critical review. In: Bahadur B, Venkat Rajam M, Sahijram L, Krishnamurthy KV (eds) Plant biology and biotechnology. Springer, New Delhi, pp 307–333. https://doi.org/10.1007/978-81-322-2286-6_12

    Chapter  Google Scholar 

  26. Kalayu G (2019) Phosphate solubilizing microorganisms: promising approach as biofertilizers. Int J Agron 2019:1–7. https://doi.org/10.1155/2019/4917256

    Article  CAS  Google Scholar 

  27. Devi R, Kaur T, Kour D, Yadav AN (2022) Microbial consortium of mineral solubilizing and nitrogen fixing bacteria for plant growth promotion of amaranth (Amaranthus hypochondrius L.). Biocatal Agric Biotechnol 43:102404. https://doi.org/10.1016/j.bcab.2022.102404

    Article  CAS  Google Scholar 

  28. Kaur T, Devi R, Kumar S, Kour D, Yadav AN (2023) Plant growth promotion of pearl millet (Pennisetum glaucum L.) by novel bacterial consortium with multifunctional attributes. Biologia 78:621–631. https://doi.org/10.1007/s11756-022-01291-5

    Article  CAS  Google Scholar 

  29. Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390. https://doi.org/10.3390/ijms14047370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Meena RS, Verma JP (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253

    Chapter  Google Scholar 

  31. Sattar A, Naveed M, Ali M, Zahir ZA, Nadeem SM, Yaseen M, Meena VS, Farooq M, Singh R, Rahman M, Meena HN (2019) Perspectives of potassium solubilizing microbes in sustainable food production system: a review. Appl Soil Ecol 133:146–159. https://doi.org/10.1016/j.apsoil.2018.09.012

    Article  Google Scholar 

  32. Kour D, Rana KL, Kaur T, Yadav N, Halder SK, Yadav AN, Sachan SG, Saxena AK (2020) Potassium solubilizing and mobilizing microbes: biodiversity, mechanisms of solubilization, and biotechnological implication for alleviations of abiotic stress. In: Rastegari AA, Yadav AN, Yadav N (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 177–202. https://doi.org/10.1016/B978-0-12-820526-6.00012-9

    Chapter  Google Scholar 

  33. Devi R, Kaur T, Kour D, Yadav AN, Suman A (2022) Potential applications of mineral solubilizing rhizospheric and nitrogen fixing endophytic bacteria as microbial consortium for the growth promotion of chilli (Capsicum annum L.). Biologia 77:2933–2943. https://doi.org/10.1007/s11756-022-01127-2

    Article  CAS  Google Scholar 

  34. Kaur T, Devi R, Kumar S, Kour D, Yadav AN (2023) Synergistic effect of endophytic and rhizospheric microbes for plant growth promotion of foxtail millet (Setaria italica L.). Nat Acad Sci Lett 46:27–30. https://doi.org/10.1007/s40009-022-01190-y

    Article  CAS  Google Scholar 

  35. Gorain B, Paul S, Parihar M (2022) Role of soil microbes in micronutrient solubilization. In: Singh H, Vaishnav A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 131–150. https://doi.org/10.1016/B978-0-323-85163-3.00018-1

    Chapter  Google Scholar 

  36. Kaur T, Devi R, Kour D, Yadav A, Yadav AN, Dikilitas M, Abdel-Azeem AM, Ahluwalia AS, Saxena AK (2021) Plant growth promoting soil microbiomes and their potential implications for agricultural and environmental sustainability. Biologia 76:2687–2709. https://doi.org/10.1007/s11756-021-00806-w

    Article  Google Scholar 

  37. Saleem S, Malik A, Khan ST (2023) Prospects of ZnO-nanoparticles for Zn biofortification of Triticum aestivum in a zinc-solubilizing bacteria. Environ J Soil Sci Plant Nut 23:4350–4360. https://doi.org/10.1007/s42729-023-01354-9

    Article  CAS  Google Scholar 

  38. Shakeel M, Hafeez FY, Malik IR, Rauf A, Jan F, Khan I, Ijaz I, Elsadek MF, Ali MA, Rashid K (2023) Zinc solubilizing bacteria synergize the effect of zinc sulfate on growth, yield and grain zinc content of rice (Oryza sativa). Cereal Res Commun. https://doi.org/10.1007/s42976-023-00439-6

    Article  Google Scholar 

  39. Bashan Y, de Bashan LE, Prabhu S, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant Soil 378:1–33. https://doi.org/10.1007/s11104-013-1956-x

    Article  CAS  Google Scholar 

  40. Sharma S, Rathod ZR, Jain R, Goswami D, Saraf M (2023) Strategies to evaluate microbial consortia for mitigating abiotic stress in plants. In: Maheshwari DK, Dheeman S (eds) sustainable agrobiology: design and development of microbial consortia. Springer, Singapore, pp 177–203

    Chapter  Google Scholar 

  41. Armanhi JSL, De Souza RSC, Damasceno NdB, De Araujo LM, Imperial J, Arruda P (2018) A community-based culture collection for targeting novel plant growth-promoting bacteria from the sugarcane microbiome. Front Plant Sci 8:2191. https://doi.org/10.3389/fpls.2017.02191

    Article  PubMed  PubMed Central  Google Scholar 

  42. De Vrieze M, Germanier F, Vuille N, Weisskopf L (2018) Combining different potato-associated Pseudomonas strains for improved biocontrol of Phytophthora infestans. Front microbiol 9:2573. https://doi.org/10.3389/fmicb.2018.02573

    Article  PubMed  PubMed Central  Google Scholar 

  43. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2 High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berninger T, González López Ó, Bejarano A, Preininger C, Sessitsch A (2018) Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microb Biotechnol 11:277–301. https://doi.org/10.1111/1751-7915.12880

    Article  CAS  PubMed  Google Scholar 

  45. Malusá E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 2012:491206. https://doi.org/10.1100/2012/491206

    Article  Google Scholar 

  46. Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P (2017) Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res 24:3315–3335. https://doi.org/10.1007/s11356-016-8104-0

    Article  CAS  Google Scholar 

  47. Chen JH (2006) The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. International Workshop on Sustained Management of the soil-rhizosphere system for efficient crop production and fertilizer use Land Development Department Bangkokd Thailand, 16:1–11

  48. Gouda S, Kerry RG, Das G, Paramithiotis S, Shin H-S, Patra JK (2008) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140. https://doi.org/10.1016/j.micres.2017.08.016

    Article  Google Scholar 

  49. Bhattacharjya S, Chandra R (2013) Effect of inoculation methods of Mesorhizobium ciceri and PGPR in chickpea (Cicer areietinum L.) on symbiotic traits, yields, nutrient uptake and soil properties. Legume Res Int J36:331–337

    Google Scholar 

  50. Domenico P (2020) Optimised fertilisation with zeolitites containing Plant Growth Promoting Rhizobacteria (PGPR) in Ranunculus asiaticus. GSC Biol Pharm Sci 10:096–102. https://doi.org/10.30574/gscbps.2020.10.1.0011

    Article  CAS  Google Scholar 

  51. Mącik M, Gryta A, Frąc M (2020) Biofertilizers in agriculture: an overview on concepts, strategies and effects on soil microorganisms. Adv Agron 162:31–87. https://doi.org/10.1016/bs.agron.2020.02.001

    Article  Google Scholar 

  52. Planchamp C, Glauser G, Mauch-Mani B (2015) Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants. Front Plant Sci 5:719. https://doi.org/10.3389/fpls.2014.00719

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fernandez O, Theocharis A, Bordiec S, Feil R, Jacquens L, Clément C (2012) Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Am Phytopathol Soc 25:496–504. https://doi.org/10.1094/MPMI-09-11-0245

    Article  CAS  Google Scholar 

  54. Sethi SK, Sahu JK, Adhikary SP (2018) Microbial biofertilizers and their pilot-scale production. CRC Press, Boca Raton, pp 312–331

    Google Scholar 

  55. Ahmad M, Pataczek L, Hilger TH, Zahir ZA, Hussain A, Rasche F, Schafleitner R, Solberg SØ (2018) Perspectives of microbial inoculation for sustainable development and environmental management. Front Microbiol 5(9):2992. https://doi.org/10.3389/fmicb.2018.02992

    Article  Google Scholar 

  56. Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology-A review. Soil Biol Biochem 36:1275–1288. https://doi.org/10.1016/j.soilbio.2004.04.009

    Article  CAS  Google Scholar 

  57. Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, McHardy AC, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403. https://doi.org/10.1016/j.chom.2015.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dal Cortivo C, Barion G, Ferrari M, Visioli G, Dramis L, Panozzo A, Vamerali T (2018) Effects of field inoculation with VAM and bacteria consortia on root growth and nutrients uptake in common wheat. Sustainability 10:3286. https://doi.org/10.3390/su10093286

    Article  CAS  Google Scholar 

  59. Sekar J, Raj R, Prabavathy VR (2016) Microbial consortial products for sustainable agriculture: commercialization and regulatory issues in India. In: Singh H, Sarma B, Keswani C (eds) Agriculturally important microorganisms. Springer, Singapore. https://doi.org/10.1007/978-981-10-2576-1_7

    Chapter  Google Scholar 

  60. Ghosh N (2004) Promoting biofertilisers in Indian agriculture. Econ Polit Wkly 39:5617–5625

    Google Scholar 

  61. Kumar S (2012) Biopesticides: a need for food and environmental safety. J Biofertil Biopestic 3:1–3. https://doi.org/10.4172/2155-6202.1000e107

    Article  CAS  Google Scholar 

  62. García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. Aims Bioeng 2:183–205. https://doi.org/10.3934/bioeng.2015.3.183

    Article  CAS  Google Scholar 

  63. Souza Rd, Ambrosini A, Passaglia LM (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419. https://doi.org/10.1590/S1415-475738420150053

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598. https://doi.org/10.1007/s13213-010-0117-1

    Article  Google Scholar 

  65. Dong W, Liu K, Wang F, Xin F, Zhang W, Zhang M, Wu H, Ma J, Jiang M (2017) The metabolic pathway of metamifop degradation by consortium ME-1 and its bacterial community structure. Biodegradation 28:181–194. https://doi.org/10.1007/s10532-017-9787-8

    Article  CAS  PubMed  Google Scholar 

  66. Santoyo G, Urtis-Flores CA, Loeza-Lara PD, Orozco-Mosqueda MdC, Glick BR (2021) Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology 10:475. https://doi.org/10.3390/biology10060475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kausar R, Choudhary MI, Akram MI, Rashid M, Rehman OU, Malik A, Khalid MAUR, Zubair M, Alvi S (2018) Response of groundnut (Arachis hypogaea L.) to plant growth promoting rhizobacteria in degraded soils. Afr J Agricultural Res 13:904–910

    Article  CAS  Google Scholar 

  68. O’Callaghan M, Gerard EM, Carter PE, Lardner R, Sarathchandra U, Burch G, Ghani A, Bell N (2010) Effect of the nitrification inhibitor dicyandiamide (DCD) on microbial communities in a pasture soil amended with bovine urine. Soil Biol Biochem 42:1425–1436. https://doi.org/10.1016/j.soilbio.2010.05.003

    Article  CAS  Google Scholar 

  69. Vishwakarma K, Kumar N, Shandilya C, Mohapatra S, Bhayana S, Varma A (2020) Revisiting plant–microbe interactions and microbial consortia application for enhancing sustainable agriculture: a review. Front Microbiol 11:560406. https://doi.org/10.3389/fmicb.2020.560406

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kumar A, Maurya BR (2021) Raghuwanshi R (2021) The microbial consortium of indigenous rhizobacteria improving plant health, yield and nutrient content in wheat (Triticum aestivum). J Plant Nutr 44:1942–1956. https://doi.org/10.1080/01904167.2021.1884706

    Article  CAS  Google Scholar 

  71. Zhang J, Dai Z, Ahmed W, Zhou X, He Z, Wei L, Ji G (2022) Microbial consortia: An engineering tool to mitigate the clubroot incidence on Chinese cabbage by reshaping the rhizosphere microbiome. https://doi.org/10.21203/rs.3.rs-1411677/v1

  72. Yahya M, Rasul M, Hussain SZ, Dilawar A, Ullah M, Rajput L, Afzal A, Asif M, Wubet T, Yasmin S (2023) Integrated analysis of potential microbial consortia, soil nutritional status, and agro-climatic datasets to modulate P nutrient uptake and yield effectiveness of wheat under climate change resilience. Front Plant Sci 13:1074383. https://doi.org/10.3389/fpls.2022.1074383

    Article  PubMed  PubMed Central  Google Scholar 

  73. Díaz PR, Merlo F, Carrozzi L, Valverde C, Creus CM, Maroniche GA (2023) Lettuce growth improvement by Azospirillum argentinense and fluorescent Pseudomonas co-inoculation depends on strain compatibility. Appl Soil Ecol 189:104969. https://doi.org/10.1016/j.apsoil.2023.104969

    Article  Google Scholar 

  74. Ding X, Lan W, Gu J-D (2020) A review on sampling techniques and analytical methods for microbiota of cultural properties and historical architecture. Appl Sci 10:8099. https://doi.org/10.3390/app10228099

    Article  CAS  Google Scholar 

  75. Lax S, Abreu CI, Gore J (2020) Higher temperatures generically favour slower-growing bacterial species in multispecies communities. Nat Ecol Evol 4:560–567. https://doi.org/10.1101/689380

    Article  PubMed  Google Scholar 

  76. Che S, Men Y (2019) Synthetic microbial consortia for biosynthesis and biodegradation: promises and challenges. J Ind Microbiol Biotechnol 46:1343–1358. https://doi.org/10.1007/s10295-019-02211-4

    Article  CAS  PubMed  Google Scholar 

  77. Jawed K, Yazdani SS, Koffas MA (2019) Advances in the development and application of microbial consortia for metabolic engineering. Metab Eng Commun 9:e00095. https://doi.org/10.1016/j.mec.2019.e00095

    Article  PubMed  PubMed Central  Google Scholar 

  78. Santoyo G, Guzmán-Guzmán P, Parra-Cota FI, Sdl S-V, Orozco-Mosqueda MdC, Glick BR (2021) Plant growth stimulation by microbial consortia. Agronomy 11:219. https://doi.org/10.3390/agronomy11020219

    Article  CAS  Google Scholar 

  79. Jones JA, Koffas MAG (2016) Optimizing metabolic pathways for the improved production of natural products. In: O’Connor SE (ed) Methods enzymology. Elsevier, Amsterdam, pp 179–193

    Google Scholar 

  80. Sarsan S, Pandiyan A, Rodhe AV (2021) Jagavati S (2021) Synergistic interactions among microbial communities. In: Singh RP, Manchanda G, Bhattacharjee K, Panosyan H (eds) Microbes in microbial communities: ecological and applied perspectives. Singapore, Springer Singapore, pp 1–37

    Google Scholar 

  81. Khan MY, Nadeem SM, Sohaib M, Waqas MR, Alotaibi F, Ali L, Zahir ZA, Al-Barakah FN (2022) Potential of plant growth promoting bacterial consortium for improving the growth and yield of wheat under saline conditions. Front microbiol 13:958522. https://doi.org/10.3389/fmicb.2022.958522

    Article  PubMed  PubMed Central  Google Scholar 

  82. Akhtar N, Ilyas N, Hayat R, Yasmin H, Noureldeen A, Ahmad P (2021) Synergistic effects of plant growth promoting rhizobacteria and silicon dioxide nano-particles for amelioration of drought stress in wheat. Plant Physiol Biochem 166:160–176. https://doi.org/10.1016/j.plaphy.2021.05.039

    Article  CAS  PubMed  Google Scholar 

  83. Jain A, Singh A, Singh S, Singh HB (2015) Biological management of Sclerotinia sclerotiorum in pea using plant growth promoting microbial consortium. J Basic Microbiol 55:961–972. https://doi.org/10.1002/jobm.201400628

    Article  CAS  PubMed  Google Scholar 

  84. Chamkhi I, Zwanzig J, Ibnyasser A, Cheto S, Geistlinger J, Saidi R, Zeroual Y, Kouisni L, Bargaz A, Ghoulam C (2023) Siccibacter colletis as a member of the plant growth-promoting rhizobacteria consortium to improve faba-bean growth and alleviate phosphorus deficiency stress. Front SustainFood Syst 7:1134809. https://doi.org/10.3389/fsufs.2023.1134809

    Article  Google Scholar 

  85. Tadesse A, Melak KTW (2021) Effect of azotobacter and pseudomonas with mineral fertilizer on yield and yield components of malt barley (Hordeum vulgare L.). J Nat Sci Res 12:25–30

    Google Scholar 

  86. Devi R, Kaur T, Negi R, Kour D, Chaubey KK, Yadav AN (2023) Indigenous plant growth-promoting rhizospheric and endophytic bacteria as liquid bioinoculants for growth of sweet pepper (Capsicum annuum L.). Biologia 78:1–11. https://doi.org/10.1007/s11756-023-01410-w

    Article  CAS  Google Scholar 

  87. Rajasekar S, Elango R (2011) Effect of microbial consortium on plant growth and improvement of alkaloid content in Withania somnifera (Ashwagandha). Curr Bot 2:27–30

    Google Scholar 

  88. Srivastava S, Sharma S (2022) Metabolomic insight into the synergistic mechanism of action of a bacterial consortium in plant growth promotion. J Biosci Bioeng 134:399–406. https://doi.org/10.1016/j.jbiosc.2022.07.013

    Article  CAS  PubMed  Google Scholar 

  89. Srinivasan K, Mathivanan N (2011) Plant growth promoting microbial consortia mediated classical biocontrol of sunflower necrosis virus disease. J Biopestic 4:65–72

    Article  Google Scholar 

  90. Kapadia C, Sayyed R, El Enshasy HA, Vaidya H, Sharma D, Patel N, Malek RA, Syed A, Elgorban AM, Ahmad K (2021) Halotolerant microbial consortia for sustainable mitigation of salinity stress, growth promotion, and mineral uptake in tomato plants and soil nutrient enrichment. Sustainability 13:8369. https://doi.org/10.3390/su13158369

    Article  CAS  Google Scholar 

  91. Pellegrini M, Spera DM, Ercole C, Del Gallo M (2021) Allium cepa L. inoculation with a consortium of plant growth-promoting bacteria: Effects on plants, soil, and the autochthonous microbial community. Microorganisms 9:639. https://doi.org/10.3390/microorganisms9030639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kumar H, Dubey R, Maheshwari D (2011) Effect of plant growth promoting rhizobia on seed germination, growth promotion and suppression of Fusarium wilt of fenugreek (Trigonella foenum-graecum L.). Crop Protect 30:1396–1403. https://doi.org/10.1016/j.cropro.2011.05.001

    Article  Google Scholar 

  93. Dary M, Chamber-Pérez M, Palomares A, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330. https://doi.org/10.1016/j.jhazmat.2009.12.035

    Article  CAS  PubMed  Google Scholar 

  94. Molina-Romero D, Baez A, Quintero-Hernández V, Castañeda-Lucio M, Fuentes-Ramírez LE, Bustillos-Cristales MdR, Rodríguez-Andrade O, Morales-García YE, Munive A, Muñoz-Rojas J (2017) Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PLoS ONE 12:e0187913. https://doi.org/10.1371/journal.pone.0187913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.N. contributed to Writing of the original draft, B.S. contributed to Writing of the manuscript, T.J. contributed to Writing of the manuscript, T.K. contributed to Writing of the manuscript, S.C., M.K., S.S., A.K., A.K.R., S.R., S.S., D.K., N.A., and K.K. contributed to Reviewing of the manuscript, A.N.Y. contributed to Conceptualization.

Corresponding author

Correspondence to Ajar Nath Yadav.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negi, R., Sharma, B., Jan, T. et al. Microbial Consortia: Promising Tool as Plant Bioinoculants for Agricultural Sustainability. Curr Microbiol 81, 222 (2024). https://doi.org/10.1007/s00284-024-03755-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03755-0

Navigation