Skip to main content
Log in

Antagonistic Activities of Metschnikowia pulcherrima Isolates Against Penicillium expansum on Amasya Apples

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Postharvest fungal diseases cause serious fruit losses and food safety issues worldwide. The trend in preventing food loss and waste has shifted to environmentally friendly and sustainable methods, such as biological control. Penicillium expansum is a common postharvest contaminant fungus that causes blue mould disease and patulin formation on apples. This study aimed to provide biocontrol using Metschnikowia pulcherrima isolates against P. expansum, and to understand their antagonistic action mechanisms. In vitro, 38.77–51.69% of mycelial growth inhibition of P. expansum was achieved by M. pulcherrima isolates with the dual culture assay, while this rate was 69.45–84.89% in the disc diffusion assay. The disease symptoms of P. expansum on wounds were reduced by M. pulcherrima, on Amasya apples. The lesion diameter, 41.84 mm after 12 d of incubation in control, was measured as 24.14 mm when treated with the most effective M. pulcherrima DN-MP in vivo. Although the antagonistic mechanisms of M. pulcherrima isolates were similar, there was a difference between their activities. In general, DN-HS and DN-MP isolates were found to be more effective. In light of all these results, it can be said that M. pulcherrima isolates used in the study have an antagonistic effect against the growth of P. expansum both in vitro and in vivo in Amasya apples, therefore, when the appropriate formulation is provided, they can be used as an alternative biocontrol agent to chemical fungicides in the prevention of postharvest diseases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. Zhang X, Li B, Zhang Z, Chen Y, Tian S (2020) Antagonistic yeasts: a promising alternative to chemical fungicides for controlling postharvest decay of fruit. J Fungi 6:158. https://doi.org/10.3390/jof6030158

    Article  Google Scholar 

  2. Oztekin S, Dikmetas DN, Devecioglu D, Acar EG, Karbancioglu-Guler F (2023) Recent insights into the use of antagonistic yeasts for sustainable biomanagement of postharvest pathogenic and mycotoxigenic fungi in fruits with their prevention strategies against mycotoxins. J Agric Food Chem 71:9923–9950. https://doi.org/10.1021/acs.jafc.3c00315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Luciano-Rosario D, Keller NP, Jurick WM II (2020) Penicillium expansum: biology, omics, and management tools for a global postharvest pathogen causing blue mould of pome fruit. Mol Plant Pathol 21:1391–1404. https://doi.org/10.1111/mpp.12990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Erper İ, Kalkan Ç, Kaçar G, Türkkan M (2019) Elmada mavi küfe neden olan Penicillium expansum’a karşı bazı bor tuzlarının antifungal etkisi. ANADOLU J Agric Sci 34:250–258. https://doi.org/10.7161/omuanajas.515031

    Article  Google Scholar 

  5. Lin R, Yang Q, Xiao J, Solairaj D, Ngea GLN, Zhang H (2022) Study on the biocontrol effect and physiological mechanism of Hannaella sinensis on the blue mold decay of apples. Int J Food Microbiol 382:109931. https://doi.org/10.1016/j.ijfoodmicro.2022.109931

    Article  CAS  PubMed  Google Scholar 

  6. Andersen B, Smedsgaard J, Frisvad JC (2004) Penicillium expansum : consistent production of patulin, chaetoglobosins, and other secondary metabolites in culture and their natural occurrence in fruit products. J Agric Food Chem 52:2421–2428. https://doi.org/10.1021/jf035406k

    Article  CAS  PubMed  Google Scholar 

  7. Errampalli D (2014) Chapter 6—Penicillium expansum (blue mold). In: Bautista-Baños S (ed) Postharvest decay. Academic Press, San Diego, pp 189–231

    Chapter  Google Scholar 

  8. Corona-Leo LS, Meza-Márquez OG, Hernández-Martínez DM (2021) Effect of in vitro digestion on phenolic compounds and antioxidant capacity of different apple (Malus domestica) varieties harvested in Mexico. Food Biosci 43:101311. https://doi.org/10.1016/j.fbio.2021.101311

    Article  CAS  Google Scholar 

  9. Zhong L, Carere J, Lu Z, Lu F, Zhou T (2018) Patulin in apples and apple-based food products: the burdens and the mitigation strategies. Toxins 10:475. https://doi.org/10.3390/toxins10110475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gong D, Bi Y, Jiang H, Xue S, Wang Z, Li Y, Zong Y, Prusky D (2019) A comparison of postharvest physiology, quality and volatile compounds of ‘Fuji’ and ‘Delicious’ apples inoculated with Penicillium expansum. Postharvest Biol Technol 150:95–104. https://doi.org/10.1016/j.postharvbio.2018.12.018

    Article  CAS  Google Scholar 

  11. Hernandez-Montiel LG, Droby S, Preciado-Rangel P, Rivas-García T, González-Estrada RR, Gutiérrez-Martínez P, Ávila-Quezada GD (2021) A sustainable alternative for postharvest disease management and phytopathogens biocontrol in fruit: antagonistic yeasts. Plants 10:2641. https://doi.org/10.3390/plants10122641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou T, Wang X, Luo J, Ye B, Zhou Y, Zhou L, Lai T (2018) Identification of differentially expressed genes involved in spore germination of Penicillium expansum by comparative transcriptome and proteome approaches. MicrobiologyOpen 7:e00562. https://doi.org/10.1002/mbo3.562

    Article  CAS  PubMed  Google Scholar 

  13. Dukare AS, Paul S, Nambi VE, Gupta RK, Singh R, Sharma K, Vishwakarma RK (2019) Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Crit Rev Food Sci Nutr 59:1498–1513. https://doi.org/10.1080/10408398.2017.1417235

    Article  CAS  PubMed  Google Scholar 

  14. Liu J, Sui Y, Wisniewski M, Droby S, Liu Y (2013) Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int J Food Microbiol 167:153–160. https://doi.org/10.1016/j.ijfoodmicro.2013.09.004

    Article  PubMed  Google Scholar 

  15. Spadaro D, Droby S (2016) Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci Technol 47:39–49. https://doi.org/10.1016/j.tifs.2015.11.003

    Article  CAS  Google Scholar 

  16. Chi M, Li G, Liu Y, Liu G, Li M, Zhang X, Sun Z, Sui Y, Liu J (2015) Increase in antioxidant enzyme activity, stress tolerance and biocontrol efficacy of Pichia kudriavzevii with the transition from a yeast-like to biofilm morphology. Biol Control 90:113–119. https://doi.org/10.1016/j.biocontrol.2015.06.006

    Article  CAS  Google Scholar 

  17. Sipiczki M (2020) Metschnikowia pulcherrima and related pulcherrimin-producing yeasts: fuzzy species boundaries and complex antimicrobial antagonism. Microorganisms 8:1029. https://doi.org/10.3390/microorganisms8071029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang S, Zhang H, Ruan C, Yi L, Deng L, Zeng K (2021) Metschnikowia citriensis FL01 antagonize Geotrichum citri-aurantii in citrus fruit through key action of iron depletion. Int J Food Microbiol 357:109384. https://doi.org/10.1016/j.ijfoodmicro.2021.109384

    Article  CAS  PubMed  Google Scholar 

  19. Oztekin S, Karbancioglu-Guler F (2021) Bioprospection of Metschnikowia sp. isolates as biocontrol agents against postharvest fungal decays on lemons with their potential modes of action. Postharvest Biol Technol 181:111634. https://doi.org/10.1016/j.postharvbio.2021.111634

    Article  CAS  Google Scholar 

  20. Hernandez-Montiel LG, Gutierrez-Perez ED, Murillo-Amador B, Vero S, Chiquito-Contreras RG, Rincon-Enriquez G (2018) Mechanisms employed by Debaryomyces hansenii in biological control of anthracnose disease on papaya fruit. Postharvest Biol Technol 139:31–37. https://doi.org/10.1016/j.postharvbio.2018.01.015

    Article  Google Scholar 

  21. Parafati L, Vitale A, Restuccia C, Cirvilleri G (2015) Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiol 47:85–92. https://doi.org/10.1016/j.fm.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  22. Öztekin S, Karbancioglu-Guler F (2023) Biological control of green mould on mandarin fruit through the combined use of antagonistic yeasts. Biol Control 180:105186. https://doi.org/10.1016/j.biocontrol.2023.105186

    Article  CAS  Google Scholar 

  23. Parafati L, Vitale A, Restuccia C, Cirvilleri G (2017) Performance evaluation of volatile organic compounds by antagonistic yeasts immobilized on hydrogel spheres against gray, green and blue postharvest decays. Food Microbiol 63:191–198. https://doi.org/10.1016/j.fm.2016.11.021

    Article  CAS  PubMed  Google Scholar 

  24. de Paiva E, Serradilla MJ, Ruiz-Moyano S, Córdoba MG, Villalobos MC, Casquete R, Hernández A (2017) Combined effect of antagonistic yeast and modified atmosphere to control Penicillium expansum infection in sweet cherries cv. Ambrunés Int J Food Microbiol 241:276–282. https://doi.org/10.1016/j.ijfoodmicro.2016.10.033

    Article  CAS  PubMed  Google Scholar 

  25. Rodriguez Assaf LA, Pedrozo LP, Nally MC, Pesce VM, Toro ME, Castellanos de Figueroa LI, Vazquez F (2020) Use of yeasts from different environments for the control of Penicillium expansum on table grapes at storage temperature. Int J Food Microbiol 320:108520. https://doi.org/10.1016/j.ijfoodmicro.2020.108520

    Article  CAS  PubMed  Google Scholar 

  26. Dikmetas DN, Özer H, Karbancıoglu-Guler F (2023) Biocontrol potential of antagonistic yeasts on in vitro and in vivo aspergillus growth and its AFB1 production. Toxins 15:402. https://doi.org/10.3390/toxins15060402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang R, Che HJ, Zhang J, Yang L, Jiang DH, Li GQ (2012) Evaluation of Sporidiobolus pararoseus strain YCXT3 as biocontrol agent of Botrytis cinerea on post-harvest strawberry fruits. Biol Control 62:53–63. https://doi.org/10.1016/j.biocontrol.2012.02.010

    Article  Google Scholar 

  28. Medina-Córdova N, López-Aguilar R, Ascencio F, Castellanos T, Campa-Córdova AI, Angulo C (2016) Biocontrol activity of the marine yeast Debaryomyces hansenii against phytopathogenic fungi and its ability to inhibit mycotoxins production in maize grain (Zea mays L.). Biol Control 97:70–79. https://doi.org/10.1016/j.biocontrol.2016.03.006

    Article  Google Scholar 

  29. Liu Y, Yao S, Deng L, Ming J, Zeng K (2019) Different mechanisms of action of isolated epiphytic yeasts against Penicillium digitatum and Penicillium italicum on citrus fruit. Postharvest Biol Technol 152:100–110. https://doi.org/10.1016/j.postharvbio.2019.03.002

    Article  Google Scholar 

  30. Saravanakumar D, Ciavorella A, Spadaro D, Garibaldi A, Gullino ML (2008) Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternata and Penicillium expansum in apples through iron depletion. Postharvest Biol Technol 49:121–128. https://doi.org/10.1016/j.postharvbio.2007.11.006

    Article  CAS  Google Scholar 

  31. Escribano R, González-Arenzana L, Garijo P, Berlanas C, López-Alfaro I, López R, Gutiérrez AR, Santamaría P (2017) Screening of enzymatic activities within different enological non-Saccharomyces yeasts. J Food Sci Technol 54:1555–1564. https://doi.org/10.1007/s13197-017-2587-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pretscher J, Fischkal T, Branscheidt S, Jäger L, Kahl S, Schlander M, Thines E, Claus H (2018) Yeasts from different habitats and their potential as biocontrol agents. Fermentation 4:31. https://doi.org/10.3390/fermentation4020031

    Article  CAS  Google Scholar 

  33. Roberts WK, Selitrennikoff CP (1988) Plant and bacterial chitinases differ in antifungal activity. Microbiology 134:169–176. https://doi.org/10.1099/00221287-134-1-169

    Article  CAS  Google Scholar 

  34. Merín MG, Mendoza LM, Farías ME, Morata de Ambrosini VI (2011) Isolation and selection of yeasts from wine grape ecosystem secreting cold-active pectinolytic activity. Int J Food Microbiol 147:144–148. https://doi.org/10.1016/j.ijfoodmicro.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  35. Knob A, Izidoro SC, Lacerda LT, Rodrigues A, de Lima VA (2020) A novel lipolytic yeast Meyerozyma guilliermondii: efficient and low-cost production of acid and promising feed lipase using cheese whey. Biocatal Agric Biotechnol 24:101565. https://doi.org/10.1016/j.bcab.2020.101565

    Article  Google Scholar 

  36. Yang H, Wang L, Li S, Gao X, Wu N, Zhao Y, Sun W (2021) Control of postharvest grey spot rot of loquat fruit with Metschnikowia pulcherrima E1 and potential mechanisms of action. Biol Control 152:104406. https://doi.org/10.1016/j.biocontrol.2020.104406

    Article  CAS  Google Scholar 

  37. Ruiz-Moyano S, Martín A, Villalobos MC, Calle A, Serradilla MJ, Córdoba MG, Hernández A (2016) Yeasts isolated from figs (Ficus carica L.) as biocontrol agents of postharvest fruit diseases. Food Microbiol 57:45–53. https://doi.org/10.1016/j.fm.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  38. Settier-Ramírez L, López-Carballo G, Hernández-Muñoz P, Fontana A, Strub C, Schorr-Galindo S (2021) New isolated Metschnikowia pulcherrima strains from apples for postharvest biocontrol of Penicillium expansum and patulin accumulation. Toxins 13:397. https://doi.org/10.3390/toxins13060397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Spadaro D, Vola R, Piano S, Gullino ML (2002) Mechanisms of action and efficacy of four isolates of the yeast Metschnikowia pulcherrima active against postharvest pathogens on apples. Postharvest Biol Technol 24:123–134. https://doi.org/10.1016/S0925-5214(01)00172-7

    Article  Google Scholar 

  40. Wang K, Ngea GLN, Godana EA, Shi Y, Lanhuang B, Zhang X, Zhao L, Yang Q, Wang S, Zhang H (2021) Recent advances in Penicillium expansum infection mechanisms and current methods in controlling P. expansum in postharvest apples. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2021.1978384

    Article  PubMed  Google Scholar 

  41. Oro L, Feliziani E, Ciani M, Romanazzi G, Comitini F (2018) Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries. Int J Food Microbiol 265:18–22. https://doi.org/10.1016/j.ijfoodmicro.2017.10.027

    Article  CAS  PubMed  Google Scholar 

  42. Di Francesco A, Ugolini L, Lazzeri L, Mari M (2015) Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biol Control 81:8–14. https://doi.org/10.1016/j.biocontrol.2014.10.004

    Article  CAS  Google Scholar 

  43. Contarino R, Brighina S, Fallico B, Cirvilleri G, Parafati L, Restuccia C (2019) Volatile organic compounds (VOCs) produced by biocontrol yeasts. Food Microbiol 82:70–74. https://doi.org/10.1016/j.fm.2019.01.008

    Article  CAS  PubMed  Google Scholar 

  44. Agirman B, Erten H (2020) Biocontrol ability and action mechanisms of Aureobasidium pullulans GE17 and Meyerozyma guilliermondii KL3 against Penicillium digitatum DSM2750 and Penicillium expansum DSM62841 causing postharvest diseases. Yeast 37:437–448. https://doi.org/10.1002/yea.3501

    Article  CAS  PubMed  Google Scholar 

  45. Farbo MG, Urgeghe PP, Fiori S, Marcello A, Oggiano S, Balmas V, Hassan ZU, Jaoua S, Migheli Q (2018) Effect of yeast volatile organic compounds on ochratoxin A-producing Aspergillus carbonarius and A. ochraceus. Int J Food Microbiol 284:1–10. https://doi.org/10.1016/j.ijfoodmicro.2018.06.023

    Article  CAS  PubMed  Google Scholar 

  46. Natarajan S, Balachandar D, Senthil N, Velazhahan R, Paranidharan V (2022) Volatiles of antagonistic soil yeasts inhibit growth and aflatoxin production of Aspergillus flavus. Microbiol Res 263:127150. https://doi.org/10.1016/j.micres.2022.127150

    Article  CAS  PubMed  Google Scholar 

  47. Sipiczki M (2006) Metschnikowia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion. Appl Environ Microbiol 72:6716–6724. https://doi.org/10.1128/AEM.01275-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fernandez-San Millan A, Larraya L, Farran I, Ancin M, Veramendi J (2021) Successful biocontrol of major postharvest and soil-borne plant pathogenic fungi by antagonistic yeasts. Biol Control 160:104683. https://doi.org/10.1016/j.biocontrol.2021.104683

    Article  CAS  Google Scholar 

  49. Fernandez-San Millan A, Farran I, Larraya L, Ancin M, Arregui LM, Veramendi J (2020) Plant growth-promoting traits of yeasts isolated from Spanish vineyards: benefits for seedling development. Microbiol Res 237:126480. https://doi.org/10.1016/j.micres.2020.126480

    Article  CAS  PubMed  Google Scholar 

  50. Delali KI, Chen O, Wang W, Yi L, Deng L, Zeng K (2021) Evaluation of yeast isolates from kimchi with antagonistic activity against green mold in citrus and elucidating the action mechanisms of three yeast: P. kudriavzevii, K. marxianus, and Y. lipolytica. Postharvest Biol Technol 176:111495. https://doi.org/10.1016/j.postharvbio.2021.111495

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Emine Gizem Acar, Dilara Nur Dikmetas, Dilara Devecioglu: Investigation, Validation, Methodology, Resources, Writing—original draft; Elif Mehves Ozer, Huseyin Sarikece: Investigation, Methodology. Funda Karbancioglu-Guler: Supervision, Project administration, Writing—review & editing, Funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Funda Karbancioglu-Guler.

Ethics declarations

Conflict of interest

Authors declare no financial or non-financial interests that are directly or indirectly related to the work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1979 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acar, E.G., Dikmetas, D.N., Devecioglu, D. et al. Antagonistic Activities of Metschnikowia pulcherrima Isolates Against Penicillium expansum on Amasya Apples. Curr Microbiol 81, 180 (2024). https://doi.org/10.1007/s00284-024-03700-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03700-1

Navigation