Skip to main content

Advertisement

Log in

Virulent and Multi-drug-Resistant Edwardsiella tarda Infection in Oscar Fish: Unveiling the Threat of Mass Mortality and AMR Dissemination

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The Oscar fish (Astronotus ocellatus) is among the most commonly domesticated and exported ornamental fish species from Kerala. The ornamental fish industry faces a significant challenge with the emergence of diseases caused by multi-drug-resistant bacteria. In the present study, six isolates were resolved from the diseased Oscar fish showing haemorrhages, necrosis, and loss of pigmentation. After phenotypic and genotypic characterization, the bacteria were identified as Edwardsiella tarda, Klebsiella pneumoniae, Enterococcus faecalis, Escherichia coli, Brevibacillus borstelensis, and Staphylococcus hominis. Experimental challenge studies in healthy Oscar fish showed that E. tarda caused 100% mortality within 240 h with 6.99 × 106 CFU/fish as LD50 and histopathology revealed the typical signs of infection. The pathogen was re-recovered from the moribund fish thereby confirming Koch’s postulates. E. tarda was confirmed through the positive amplification of tarda-specific gene and virulence genes viz., etfD and escB were also detected using PCR. Antibiotic susceptibility tests using disc diffusion displayed that the pathogen is multi-drug-resistant towards antibiotics belonging to aminoglycosides, tetracyclines, and quinolones categories with a MAR index of 0.32, which implicated the antibiotic pressure in the farm. Plasmid curing studies showed a paradigm shift in the resistance pattern with MAR index of 0.04, highlighting the resistance genes are plasmid-borne except for the chromosome-borne tetracycline resistance gene (tetA). This study is the first of its kind in detecting mass mortality caused by E. tarda in Oscar fish. Vigilant surveillance and strategic actions are crucial for the precise detection of pathogens and AMR in aquaculture.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

Consent for Publication

Not applicable.

References

  1. Algammal A, Hetta HF, Mabrok M, Behzadi P (2023) Editorial: emerging multidrug-resistant bacterial pathogens “superbugs”: a rising public health threat. Front Microbiol 14:1135614. https://doi.org/10.3389/fmicb.2023.1135614

    Article  PubMed  PubMed Central  Google Scholar 

  2. Algammal AM, Eidaroos NH, Alfifi KJ, Alatawy M, Al-Harbi AI, Alanazi YF, Ghobashy MOI, Khafagy AR, Esawy AM, El-Sadda SS, Hetta HF, El-Tarabili RM (2023) OprL Gene Sequencing, resistance patterns, virulence genes, quorum sensing and antibiotic resistance genes of XDR Pseudomonas aeruginosa isolated from broiler chickens. Infect Drug Resist 13:853–867. https://doi.org/10.2147/IDR.S401473

    Article  Google Scholar 

  3. Algammal AM, Ibrahim RA, Alfifi KJ, Ghabban H, Alghamdi S, Kabrah A, Khafagy AR, Abou-Elela GM, Abu-Elala NM, Donadu MG, El-Tarabili RM (2022) A first report of molecular typing, virulence traits, and phenotypic and genotypic resistance patterns of newly emerging XDR and MDR Aeromonas veronii in Mugil seheli. Pathogens 29:1262. https://doi.org/10.3390/pathogens11111262

    Article  Google Scholar 

  4. Algammal AM, Mabrok M, Eat M, Alff KJ, Esawy AM, Elmasry N, El-Tarabili R (2022) Prevalence, antimicrobial resistance (AMR) pattern, virulence determinant and AMR genes of emerging multidrug-resistant Edwardsiella tarda in Nile tilapia and African catfish. Aquaculture 548:737643. https://doi.org/10.1016/j.aquaculture.2021.737643

    Article  CAS  Google Scholar 

  5. Aoki T, Arai T, Egusa S (1977) Detection of R plasmids in naturally occurring fish-pathogenic bacteria, Edwardsiella tarda. Microbiol Immunol 21:77–83

    Article  CAS  PubMed  Google Scholar 

  6. Armwood AR, Griffin MJ, Richardson BM, Wise DJ, Ware C, Camus AC (2022) Pathology and virulence of Edwardsiella tarda, Edwardsiella piscicida, and Edwardsiella anguillarum in channel (Ictalurus punctatus), blue (Ictalurus furcatus), and channel × blue hybrid catfish. J Fish Dis 45:1683–1698. https://doi.org/10.1111/jfd.13691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barrow GI, Feltham RKA (2004) Cowan and Steel’s manual for the identification of medical bacteria, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  8. Canak O, Timur G (2020) An initial survey on the occurrence of staphylococcal infections in Turkish marine aquaculture (2013–1014). J Appl Ichthyol 36:932–941

    Article  Google Scholar 

  9. Chinabut S, Roberts RJ, Willoughby LG, Pearson MD (1995) Histopathology of snakehead, Channa striatus (Bloch), experimentally infected with the specific Aphanomyces fungus associated with epizootic ulcerative syndrome (EUS) at different temperatures. J Fish Dis 18:41–47. https://doi.org/10.1111/j.1365-2761.1995.tb01264.x

    Article  Google Scholar 

  10. Clarke KR, Gorley RN (2015) PRIMER v7: user manual/tutorial. PRIMER-E, Plymouth, p 296

    Google Scholar 

  11. CLSI (2020) Methods for antimicrobial broth dilution and disk diffusion susceptibility testing of bacteria isolated from aquatic animals. CLSI guideline VET03, 2nd edn. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  12. Das A, Acharya S, Behera BK, Paria P, Bhowmick S, Parida PK, Das BK (2017) Isolation, identification and characterization of Klebsiella pneumoniae from infected farmed Indian Major Carp Labeo rohita (Hamilton 1822) in West Bengal, India. Aquaculture 482:111–116. https://doi.org/10.1016/j.aquaculture.2017.08.037

    Article  CAS  Google Scholar 

  13. Davies MY, de Oliveira MG, Cunha PVM, Franco SL, Santos SSL, Moreno ZL et al (2018) Edwardsiella tarda outbreak affecting fishes and aquatic birds in Brazil. Vet Q 38:99–105

    Article  Google Scholar 

  14. Department of Fisheries, Government of India (n.d.). https://dof.gov.in/inland-fisheries

  15. Ehsan R, Alam M, Akter T, Paul SI, Foysal MdJ, Gupta DR, Islam T, Rahman MdM (2021) Enterococcus faecalis involved in streptococcosis like infection in silver barb (Barbonymus gonionotus). Aquacult Rep 21:100868. https://doi.org/10.1016/j.aqrep.2021.100868

    Article  Google Scholar 

  16. El-Yazeed HA, Ibrahem MD (2009) Studies on Edwardsiella tarda infection in catfish and Tilapia nilotica. BS Vet Med J 19:44–50

    Google Scholar 

  17. Ewing WH, McWhorter AC, Escobar MR, Lubin AH (1965) Edwardsiella, a new genus of Enterobacteriaceae based on a new species, E. tarda. Int Bull Bacteriol Nomencl Taxon 15:33–38. https://doi.org/10.1099/00207713-15-1-33

    Article  Google Scholar 

  18. Fang S, Zhang L, Lou Y, Yang D, Wang Q, Zhang Y, Liu Q (2016) Intracellular translocation and localization of Edwardsiella tarda type III secretion system effector EseG in host cells. Microb Pathog 97:166–171. https://doi.org/10.1016/j.micpath.2016.05.008

    Article  CAS  PubMed  Google Scholar 

  19. Gao P, Mao D, Luo Y, Wang L, Xu B, Xu L (2012) Occurrence of sulfonamide and tetracycline-resistant bacteria and resistant genes in aquaculture environment. Water Res 46:2355–2364. https://doi.org/10.1016/j.watres.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  20. Goh KW, Abdul Kari Z, Wee W, Zakaria NNA, Rahman MM, Kabir MA, Abdul Hamid NK, Tahiluddin AB, Kamarudin AS, Téllez-Isaías G, Wei LS (2023) Exploring the roles of phytobiotics in relieving the impacts of Edwardsiella tarda infection on fish: a mini-review. Front Vet Sci 10:1149514. https://doi.org/10.3389/fvets.2023.1149514

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gufe C, Hodobo CT, Mbonjani B, Majonga O, Marumure J, Musari S, Jongi G, Makaya PV, Machakwa J (2019) Antimicrobial profiling of bacteria isolated from fish sold at informal market in Mufakose, Zimbabwe. Int J Microbiol 2019:8759636. https://doi.org/10.1155/2019/8759636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu J, Wang B, Feng J, Liu C, Jiang B, Li W, Lin L, Su Y (2022) Edwardsiella piscicida, a pathogenic bacterium newly detected in spotted sea bass Lateolabrax maculatus in China. Aquacult Rep 22:100973. https://doi.org/10.1016/j.aqrep.2021.100973

    Article  Google Scholar 

  23. Kim SY, Kuppusamy S, Kim JH et al (2016) Occurrence and diversity of tetracycline resistance genes in the agricultural soils of South Korea. Environ Sci Pollut Res 23:22190–22196

    Article  CAS  Google Scholar 

  24. Krumperman PH (1983) Multiple antibiotic resistance indexing of Escherichia coli to identify high risk sources of fecal contamination of foods. Appl Environ Microbiol 46:165–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary Genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Letchumanan V, Chan KG, Lee LH (2015) An insight of traditional plasmid curing in Vibrio species. Front Microbiol 6:735. https://doi.org/10.3389/fmicb.2015.00735

    Article  PubMed  PubMed Central  Google Scholar 

  27. Leung KY, Siame BA, Tenkink BJ, Noort RJ, Mok YK (2011) Edwardsiella tarda—virulence mechanisms of an emerging gastroenteritis pathogen. Microbes Infect 14:26–34. https://doi.org/10.1016/j.micinf.2011.08.005

    Article  CAS  PubMed  Google Scholar 

  28. Leung KY, Wang Q, Yang Z, Siame BA (2019) Edwardsiella piscicida: a versatile emerging pathogen of fish. Virulence 10:555–567. https://doi.org/10.1080/21505594.2019.1621648

    Article  PubMed  PubMed Central  Google Scholar 

  29. Leung KY, Wang Q, Zheng X, Zhuang M, Yang Z, Shao S, Achmon Y, Siame BA (2022) Versatile lifestyles of Edwardsiella: free-living, pathogen, and core bacterium of the aquatic resistome. Virulence 13:5–18. https://doi.org/10.1080/21505594.2021.2006890

    Article  CAS  PubMed  Google Scholar 

  30. Lo DY, Lee YJ, Wang JH et al (2014) Antimicrobial susceptibility and genetic characterisation of oxytetracycline-resistant Edwardsiella tarda isolated from diseased eels. Vet Rec 175:203

    Article  CAS  PubMed  Google Scholar 

  31. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  PubMed  Google Scholar 

  32. Manzoor K, Rasool F, Khan N, Anjum KM, Parveen S (2023) Resistance patterns of frequently applied antimicrobials and occurrence of antibiotic resistance genes in Edwardsiella tarda detected in edwardsiellosis-infected tilapia species of fish farms of Punjab in Pakistan. J Microbiol Biotechnol 33:668–679. https://doi.org/10.4014/jmb.2301.01008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mao D, Yu S, Rysz M et al (2015) Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water Res 85:458–466

    Article  CAS  PubMed  Google Scholar 

  34. Martinez JL, Baquero F (2009) Antibiotics and the evolution of antibiotic resistance. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0021782

  35. Miller SA, Dyke DD, Polesk HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acid Res 16:12–15. https://doi.org/10.1093/nar/16.3.1215

    Article  Google Scholar 

  36. Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. In: Kudva IT, Cornick NA (eds) Virulence mechanisms of bacterial pathogens. ASM Press, Washington, DC, pp 481–511

    Chapter  Google Scholar 

  37. Newaj-Fyzul A, Mutani A, Ramsubhag A, Adesiyun A (2008) Prevalence of bacterial pathogens and their anti-microbial resistance in tilapia and their pond water in Trinidad. Zoonoses Public Health 55:206–213. https://doi.org/10.1111/j.1863-2378.2007.01098.x

    Article  CAS  PubMed  Google Scholar 

  38. Okuda J, Takeuchi Y, Nakai T (2014) Type III secretion system genes of Edwardsiella tarda associated with intracellular replication and virulence in zebrafish. Dis Aquat Org 111:31–39. https://doi.org/10.3354/dao02763. (PMID: 25144115)

    Article  CAS  Google Scholar 

  39. Oliveira RV, Oliveira MC, Pelli A (2017) Disease infection by Enterobacteriaceae family in fishes: a review. J Microbiol Exp 4(5):119–122

    Google Scholar 

  40. Oliveira RV, Peixoto PG, Ribeiro DC et al (2014) Klebsiella pneumoniae as a main cause of infection in Nishikigoi Cyprinus carpio (carp) by inadequate handling. Braz J Vet Pathol 7:86–88

    Google Scholar 

  41. Park SB, Aoki T, Jung TS (2012) Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Vet Res 43:67. https://doi.org/10.1186/1297-9716-43-67

    Article  PubMed  PubMed Central  Google Scholar 

  42. Preena PG, Dharmarathnam A, Raj NS, Kumar TVA, Raja SA, Nair RR, Swaminathan TR (2019) Diversity of antimicrobial resistant pathogens from a freshwater ornamental fish farm. Lett Appl Microbiol 71:108–116. https://doi.org/10.1111/lam.13231

    Article  CAS  PubMed  Google Scholar 

  43. Preena PG, Dharmaratnam A, Swaminathan TR (2022) A peek into mass mortality caused by antimicrobial resistant Edwardsiella tarda in goldfish, Carassius auratus in Kerala. Biologia (Bratislava) 77(4):1161–1171. https://doi.org/10.1007/s11756-022-01007-9

    Article  CAS  Google Scholar 

  44. Preena PG, Swaminathan TR, Kumar VJR, Singh ISB (2020) Antimicrobial resistance in aquaculture: a crisis for concern. Biologia 75:1497–1517. https://doi.org/10.2478/s11756-020-00456-4

    Article  Google Scholar 

  45. Qin L, Xu J, Wang YG (2013) Edwardsiellosis in farmed turbot, Scophthalmus maximus (L.), associated with an unusual variant of Edwardsiella tarda: a clinical, aetiological and histopathological study. J Fish Dis 37:103–111. https://doi.org/10.1111/jfd.12041

    Article  CAS  Google Scholar 

  46. Raja K, Aanand P, Padmavathy S, Sampathkumar JS (2019) Present and future market trends of Indian ornamental fish sector. Int J Fish Aquat Stud 7:06–15

    Google Scholar 

  47. Rajeswar BN, Abraham TJ (2023) In silico analysis, modelling and docking studies on the etfB and etfC virulence proteins of the fish pathogen Edwardsiella tarda. J Microbiol Infect Dis 13:182–189. https://doi.org/10.5455/JMID.2023.v13.i4.3

    Article  Google Scholar 

  48. Ramirez MS, Traglia GM, Lin DL, Tran T, Tolmasky ME (2014) Plasmid-mediated antibiotic resistance and virulence in Gram-negatives: the Klebsiella pneumoniae Paradigm. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.PLAS-0016-2013

    Article  PubMed  Google Scholar 

  49. Reed MJ, Muench M (1938) A simple method for estimating fifty percent endpoints. Am J Trop Med Hyg 27:493–497. https://doi.org/10.1093/oxfordjournals.aje.a118408

    Article  Google Scholar 

  50. Reger PJ, Mockler DF, Miller MA (1993) Comparison of antimicrobial susceptibility, beta-lactamase production, plasmid analysis and serum bactericidal activity in Edwardsiella tarda, E. ictaluri and E. hoshinae. J Med Microbiol 39:273–281. https://doi.org/10.1099/00222615-39-4-273

    Article  CAS  PubMed  Google Scholar 

  51. Reichley SR, Ware C, Steadman J, Gaunt PS, García JC et al (2017) Comparative phenotypic and genotypic analysis of Edwardsiella isolates from different hosts and geographic origins, with emphasis on isolates formerly classified as E. tarda, and evaluation of diagnostic methods. J Clin Microbiol 55:3466–3491. https://doi.org/10.1128/jcm.00970-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sakai T, Kanai K, Osatomi K, Yoshikoshi K (2003) Identification of a 19.3-kDa protein in MRHA-positive Edwardsiella tarda: putative fimbrial major subunit. FEMS Microbiol Lett 226:127–133. https://doi.org/10.1016/S0378-1097(03)00608-6

    Article  CAS  PubMed  Google Scholar 

  53. Sakai T, Lida T, Osatomi K, Kanai K (2007) Detection of type 1 fimbrial genes in fish pathogenic and nonpathogenic Edwardsiella tarda strains by PCR. Fish Pathol 42:115–117. https://doi.org/10.3147/jsfp.42.115

    Article  Google Scholar 

  54. Sakai T, Matsuyama T, Sano M, Iida T (2009) Identification of novel putative virulence factors, adhesin AIDA and type VI secretion system, in atypical strains of fish pathogenic Edwardsiella tarda by genomic subtractive hybridization. Microbiol Immunol 253:131–139. https://doi.org/10.1111/j.1348-0421.2009.00108.x

    Article  CAS  Google Scholar 

  55. Shafiq M, Zeng M, Permana B, Bilal H, Huang J, Yao F, Algammal AM, Li X, Yuan Y, Jiao X (2022) Coexistence of blaNDM-5 and tet(X4) in international high-risk Escherichia coli clone ST648 of human origin in China. Front Microbiol 13:1–8

    Article  Google Scholar 

  56. Shinoj P, Baiju KK, Vijayagopal P (2021) Status and prospects of ornamental fish and fish feed industry in Southern India, vol 248. Marine Fisheries Information Service, Technical and Extension Series, pp 7–11. ISSN 0254-380X

  57. Sinha A (2020) Ornamental fish trade in India. Smart Agripost Fish 6:6–10

    Google Scholar 

  58. Sreedharan K, Philip R, Singh ISB (2011) Isolation and characterization of virulent Aeromonas veronii from ascitic fluid of Oscar Astronotus ocellatus showing signs of infectious dropsy. Dis Aquat Org 94:29–39. https://doi.org/10.3354/dao02304

    Article  CAS  Google Scholar 

  59. Stock I, Wiedemann B (2001) Natural antibiotic susceptibilities of Edwardsiella tarda, E. ictaluri, and E. hoshinae. Antimicrob Agents Chemother 45:2245–2255. https://doi.org/10.1128/AAC.45.8.2245-2255.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sun XM, Yoshida A, Toutani F, Shimizu T, Oda T, Osatomi K (2023) Cloning, DNA sequence, and expression of flagellins from high and low virulence strains of Edwardsiella tarda and their macrophage-stimulating activities. Microb Pathog 176:105993. https://doi.org/10.1016/j.micpath.2023.105993

    Article  CAS  PubMed  Google Scholar 

  61. Uddin O, Hurst J, Alkayali T, Schmalzle SA (2022) Staphylococcus hominis cellulitis and bacteremia associated with surgical clips. IDCases 27:e01436. https://doi.org/10.1016/j.idcr.2022.e01436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vaneci-Silva D, Assane IM, de Oliveira AL, Gomes FC, Moro EB, Kotzent S, Pitondo-Silva A, Pilarski F (2022) Klebsiella pneumoniae causing mass mortality in juvenile Nile tilapia in Brazil: isolation, characterization, pathogenicity and phylogenetic relationship with other environmental and pathogenic strains from livestock and human sources. Aquaculture 546:737376. https://doi.org/10.1016/j.aquaculture.2021.737376

    Article  CAS  Google Scholar 

  63. Walczak N, Puk K, Guz L (2017) Bacterial flora associated with diseased freshwater ornamental fish. J Vet Res 61:445–449. https://doi.org/10.1515/jvetres-2017-0070

    Article  PubMed  PubMed Central  Google Scholar 

  64. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xiao J, Chen T, Liu B, Yang W, Wang Q, Qu J, Zhang Y (2013) Edwardsiella tarda mutant disrupted in type III secretion system and chorismic acid synthesis and cured of a plasmid as a live attenuated vaccine in turbot. Fish Shellfish Immunol 35:632–641. https://doi.org/10.1016/j.fsi.2013.05.022

    Article  CAS  PubMed  Google Scholar 

  66. Xu T, Zhang XH (2014) Edwardsiella tarda: an intriguing problem in aquaculture. Aquaculture 431:129–135. https://doi.org/10.1016/j.aquaculture.2013.12.001

    Article  Google Scholar 

  67. Yilmaz M, Korun J, Gokoglu M, Celik YS (2019) Isolation of Staphylococcus hominis from cultured Gilthead Sea Bream (Sparus aurata L.) in Antalya Bay, Turkey. J Agric Sci 25:123–128

    Google Scholar 

  68. Yu JE, Cho MY, Kim J-W, Kang HY (2012) Large antibiotic-resistance plasmid of Edwardsiella tarda contributes to virulence in fish. Microb Pathog 52:259–266. https://doi.org/10.1016/j.micpath.2012.01.006

    Article  CAS  PubMed  Google Scholar 

  69. Zahran E, Mahgoub HA, Abdelhamid F, Sadeyen JR, Risha E (2019) Experimental pathogenesis and host immune responses of Enterococcus faecalis infection in Nile tilapia (Oreochromis niloticus). Aquaculture 512:734319. https://doi.org/10.1016/j.aquaculture.2019.734319

    Article  CAS  Google Scholar 

  70. Zare M, Kazempour M, Hosseini H, Choupani SMH, Akhavan SR, Rombenso A, Esmaeii N (2023) Fish meal replacement and early mild stress improve stress responsiveness and survival of fish after acute stress. Animals 13:1314. https://doi.org/10.3390/ani1308131

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Kerala University of Fisheries and Ocean Studies and PMFGR, ICAR-National Bureau of Fish Genetic Resources for the support.

Author information

Authors and Affiliations

Authors

Contributions

The following contributions had been done by the authors. Conceived of or designed study: PG Preena. Performed research: Vijayan Vishnupriya, Prasannan Geetha Preena, and Arathi Dharmaratnam. Data analysis and interpretation: Prasannan Geetha Preena, Vijayan Vishnupriya, Thangaraj Raja Swaminathan S.R Krupesha Sharma, and Arathi Dharmaratnam. Manuscript draft: Prasannan Geetha Preena, Vijayan Vishnupriya, and Thangaraj Raja Swaminathan. All authors read and approved the final manuscript.

Corresponding author

Correspondence to P. G. Preena.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical Approval

All the experimental challenge procedures in this study (Proposal Number NBFGR/IAEC/2019/0014) were evaluated and approved by Institute Animal Ethics Committee (IAEC) of ICAR-National Bureau of Fish Genetic Resources (NBFGR) (CPCESA Registration No. 909/GO/Re/S/05/CPCSEA dated 9 September 2005 and CPCSEA Ref File No. 25/111/2014-CPCESA dated 5th December 2018) vide Approval Number G/IAEC/2019/1 dated 4th October 2019.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

284_2024_3698_MOESM1_ESM.tif

Supplementary file1 (TIF 39 KB) Dendrogram based on phenotypic tests of the isolates resolved from the infected Oscar fish

Supplementary file2 (TIF 42 KB) Gel picture showing the plasmid (> 10 kb) extracted from OSF-K1 isolate

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishnupriya, V., Swaminathan, T.R., Dharmarathnam, A. et al. Virulent and Multi-drug-Resistant Edwardsiella tarda Infection in Oscar Fish: Unveiling the Threat of Mass Mortality and AMR Dissemination. Curr Microbiol 81, 174 (2024). https://doi.org/10.1007/s00284-024-03698-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03698-6

Navigation