Skip to main content
Log in

Humane Endpoint: Example from a Murine Model of Disseminated Sporotrichosis

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Vertebrate animal models are essential in research; however, efforts need to be made to decrease animal suffering as much as possible. It could be useful to determine humane endpoints that could serve as surrogates for a fatal outcome. We address this issue with respect to infectious diseases. We propose a humane endpoint for studies of Sporothrix brasiliensis infection. BALB/c mice were inoculated subcutaneously in the footpad. To define a humane endpoint, we considered two groups: animals who died during the experiment, and those euthanized at the end of the experiment. The groups were compared for colony-forming units (CFU) in internal organs, clinical condition, and body weight. Thirteen (22%) animals died before the end of the experiment due to the progression of local infection to severe and disseminated sporotrichosis. Analyzing data of the groups, we propose the following future criteria for euthanasia as a humane endpoint: neurological impairment OR necrosis of the footpad OR loss of ≥ 20% body weight AND moderate to severe dehydration. In view of the current global epidemiological impact of zoonotic sporotrichosis caused by S. brasiliensis, our data could facilitate the utility of models used to study the disease, particularly therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Gyssens IC (2019) Animal models for research in human infectious diseases CMI editorial policy. Clin Microbiol Infect 25(6):649–650. https://doi.org/10.1016/j.cmi.2019.04.010

    Article  CAS  PubMed  Google Scholar 

  2. National Research Council (US) (2011) Committee for the update of the guide for the care and use of laboratory animals. Guide for the care and use of laboratory animals, 8th edn. National Academies Press, Washington DC

    Google Scholar 

  3. Zhang X, Kumstel S, Tang G et al (2020) A rational approach of early humane endpoint determination in a murine model for cholestasis. Altex 37(2):197–207. https://doi.org/10.14573/altex.1909111

    Article  CAS  PubMed  Google Scholar 

  4. Hankenson FC, Ruskoski N, van Saun M et al (2013) Weight loss and reduced body temperature determine humane endpoints in a mouse model of ocular herpesvirus infection. J Am Assoc Lab Anim Sci 52(3):277–285

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sanders CJ, Johnson B, Frevert CW et al (2013) Intranasal influenza infection of mice and methods to evaluate progression and outcome. Method Mol Biol 1031:177–188. https://doi.org/10.1007/978-1-62703-481-4_20

    Article  CAS  Google Scholar 

  6. Boehm CA, Nemzek JA (2021) Analgesia and humane endpoints for rodents in sepsis research. Method Mol Biol 2321:221–229. https://doi.org/10.1007/978-1-0716-1488-4:19

    Article  CAS  Google Scholar 

  7. World Health Organization (2022) WHO fungal priority pathogens list to guide research, development and public health action

  8. WHO (2020) Ending the neglect to attain the sustainable development goals: a road map for neglected tropical diseases 2021–2030. World Health Organization, Geneva

    Google Scholar 

  9. Rabello VBS, Almeida MA, Bernardes-Engemann AR et al (2022) The historical burden of sporotrichosis in brazil: a systematic review of cases reported from 1907 to 2020. Braz J Microbiol 53(1):231–244. https://doi.org/10.1007/s42770-021-00658-1

    Article  PubMed  Google Scholar 

  10. Xavier MO, Poester VR, Trápaga MR, Stevens DA (2023) Sporothrix brasiliensis: epidemiology, therapy, and recent developments. J Fungi (Basel) 9(9):921. https://doi.org/10.3390/jof9090921

    Article  CAS  PubMed  Google Scholar 

  11. Portuondo DL, Batista-Duharte A, Ferreira LS et al (2016) A cell wall protein-based vaccine candidate induce protective immune response against Sporothrix schenckii infection. Immunobiology 221(2):300–309. https://doi.org/10.1016/j.imbio.2015.10.005

    Article  CAS  PubMed  Google Scholar 

  12. Della Terra PP, Rodrigues AM, Fernandes GF et al (2017) Exploring virulence and immunogenicity in the emerging pathogen Sporothrix brasiliensis. PLoS Negl Trop Dis 11(8):e0005903. https://doi.org/10.1371/journal.pntd.0005903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Corrêa-Moreira D, Menezes RC, Romeo O et al (2021) Clinical and anatomopathological evaluation of BALB/c murine models infected with isolates of seven pathogenic Sporothrix species. Pathogens 10(12):1647. https://doi.org/10.3390/pathogens10121647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Munhoz LS, Poester VR, Benelli JL et al (2023) Effectiveness of diphenyl diselenide against experimental Sporotrichosis caused by Sporothrix brasiliensis. Med Mycol. https://doi.org/10.1093/mmy/myad035

    Article  PubMed  Google Scholar 

  15. Sanchotene KO, Madrid IM, Klafke GB et al (2015) Sporothrix brasiliensis outbreaks and the rapid emergence of feline sporotrichosis. Mycoses. https://doi.org/10.1111/myc.12414

    Article  PubMed  Google Scholar 

  16. Fentener van Vlissingen JM, Borrens M, Girod A et al (2015) The reporting of clinical signs in laboratory animals: FELASA working group report. Lab Anim 49(4):267–283. https://doi.org/10.1177/0023677215584249

    Article  CAS  PubMed  Google Scholar 

  17. Poester VR, Munhoz LS, Nogueira CW et al (2021) Diphenyl diselenide alone and in combination with itraconazole against Sporothrix schenckii s.str. and Sporothrix globose. Braz J Microbiol 52(3):1271–1274. https://doi.org/10.1007/s42770-021-00506-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rabello VBS, de Melo TM, Meyer W et al (2023) Multi-locus sequencing typing reveals geographically related intraspecies variability of Sporothrix brasiliensis. Fungal Genet Biol 170:103845. https://doi.org/10.1016/j.fgb.2023.103845

    Article  CAS  Google Scholar 

  19. Falcão EMM, Romão AR, Magalhães MAFM et al (2022) A spatial analysis of the spread of hyperendemic sporotrichosis in the state of Rio de Janeiro. Brazil J Fungi 8(5):434. https://doi.org/10.3390/jof8050434

    Article  Google Scholar 

  20. Poester VR, Munhoz LS, Basso RP et al (2020) Disseminated sporotrichosis with immune reconstitution inflammatory syndrome in an HIV patient: case report and review of the literature. Rev Iberoam Micol. https://doi.org/10.1016/j.optmat.2011.11.002

    Article  PubMed  Google Scholar 

  21. Poester VR, Mattei AS, Madrid IM et al (2018) Sporotrichosis in Southern Brazil, towards an epidemic? Zoonoses Public Health. https://doi.org/10.1111/zph.12504

    Article  PubMed  Google Scholar 

  22. Morton DB (2000) A systematic approach for establishing humane endpoints. ILAR J 41(2):80–86. https://doi.org/10.1093/ilar.41.2.80

    Article  CAS  PubMed  Google Scholar 

  23. Hawkins P, Morton DB, Burman O et al (2011) A guide to defining and implementing protocols for the welfare assessment of laboratory animals: eleventh report of the BVAAWF/FRAME/RSPCA/UFAW joint working group on refinement. Lab Anim 45(1):1–13. https://doi.org/10.1258/la.2010.010031

    Article  CAS  PubMed  Google Scholar 

  24. Kanzler S, Rix A, Czigany Z et al (2016) Recommendation for severity assessment following liver resection and liver transplantation in rats: part I. Lab Anim 50(6):459–467. https://doi.org/10.1177/0023677216678018

    Article  CAS  PubMed  Google Scholar 

  25. Ullman-Cullere MH, Foltz CJ (1999) Body condition scoring: a rapid and accurate method for assessing health status in mice. Lab Animal Sci 49(3):319

    CAS  Google Scholar 

  26. Odds FC, Van Nuffel L, Gow NAR (2000) Survival in experimental Candida albicans infections depends on inoculum growth conditions as well as animal host. Microbiology (Reading) 146(8):1881–1889. https://doi.org/10.1099/00221287-146-8-1881

    Article  CAS  PubMed  Google Scholar 

  27. Langford DJ, Bailey AL, Chanda ML et al (2010) Coding of facial expressions of pain in the laboratory mouse. Nat Methods 7(6):447–449. https://doi.org/10.1038/nmeth.1455

    Article  CAS  PubMed  Google Scholar 

  28. Mei J, Banneke S, Lips J et al (2019) Refining humane endpoints in mouse models of disease by systematic review and machine learning-based endpoint definition. Altex 36(4):555–571. https://doi.org/10.14573/altex.1812231

    Article  PubMed  Google Scholar 

  29. Sass G, Larwood DJ, Martinez M et al (2021) Nikkomycin Z against disseminated coccidioidomycosis in a murine model of sustained release dosing. Antimicrob Agents Chemother 65(10):10–1128. https://doi.org/10.1128/AAC.00285-21

    Article  Google Scholar 

  30. Sass G, Larwood DJ, Martinez M et al (2021) Efficacy of nikkomycin Z in murine CNS coccidioidomycosis: modelling sustained-release dosing. J Antimicrob Chemother 76(10):2629–2635. https://doi.org/10.1093/jac/dkab223

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES – postgraduate scholarships), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS; number 21/2551-0001974-3 and 23/2551-0000503-4), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ 316067/2021-0 and undergraduate scholarship).

Funding

This research was funded by Fundação de Amparo à pesquisa do Estado do Rio Grande do Sul (FAPERGS), grant number 19/2551-0001922-0 (PqG 2019—edital 05/2019).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Vanice Rodrigues Poester; Lívia Silveira Munhoz, and David A. Stevens; Methodology: Vanice Rodrigues Poester, Lívia Silveira Munhoz, Mariana Rodrigues Trápaga, Bruna Muradás Esperon, and Melissa Orzechowski Xavier; Formal analysis: Vanice Rodrigues Poester, Lívia Silveira Munhoz, Mariana Rodrigues Trápaga, Bruna Muradás Esperon, and Melissa Orzechowski Xavier; Writing—original draft preparation: Vanice Rodrigues Poester; Lívia Silveira Munhoz, and David A. Stevens; Writing—review and editing: David A. Stevens and Melissa Orzechowski Xavier. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Vanice Rodrigues Poester, David A. Stevens or Melissa Orzechowski Xavier.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest pertaining to this work.

Ethical Approval

All procedures were conducted according to the National Institutes of Health Animal and Care Guidelines and the Animal Use Ethics Committee of the FURG approved the project (process number CEUA-FURG P046/2019).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poester, V.R., Munhoz, L.S., Trápaga, M.R. et al. Humane Endpoint: Example from a Murine Model of Disseminated Sporotrichosis. Curr Microbiol 81, 175 (2024). https://doi.org/10.1007/s00284-024-03692-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03692-y

Navigation