Skip to main content
Log in

Lippia grata Essential Oil Acts Synergistically with Ampicillin Against Staphylococcus aureus and its Biofilm

  • Original Paper
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Antimicrobial resistance (AMR) presents a global challenge as microorganisms evolve to withstand the effects of antibiotics. In addition, the improper use of antibiotics significantly contributes to the AMR acceleration. Essential oils have garnered attention for their antimicrobial potential. Indeed, essential oils extracted from plants contain compounds that exhibit antibacterial activity, including against resistant microorganisms. Hence, this study aimed to evaluate the antimicrobial and antibiofilm activity of the essential oil (EO) extracted from Lippia grata and its combination with ampicillin against Staphylococcus aureus strains (ATCC 25923, ATCC 700698, and JKD6008). The plant material (leaves) was gathered in Mossoro, RN, and the EO was obtained using the hydrodistillation method with the Clevenger apparatus. The antimicrobial activity of the EO was assessed through minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Antibiofilm activity was evaluated by measuring biomass using crystal violet (CV) staining, viable cell counting, and analysis of preformed biofilms. In addition, the synergistic effects of the EO in combination with ampicillin were examined by scanning electron and confocal microscopy. The EO displayed a MIC value of 2.5 mg/mL against all tested S. aureus strains and an MBC only against S. aureus JKD6008 at 2.5 mg/mL. L. grata EO caused complete biofilm inhibition at concentrations ranging from 10 to 0.312 mg/mL against S. aureus ATCC 25923 and 10 to 1.25 mg/mL against S. aureus ATCC 700698 and S. aureus JKD6008. In the viable cell quantification assay, there was a reduction in CFU ranging from 1.0 to 8.0 logs. The combination of EO with ampicillin exhibited a synergistic effect against all strains. Moreover, the combination showed a significantly inhibiting biofilm formation and eradicating preformed biofilms. Furthermore, the EO and ampicillin (individually and in combination) altered the cellular morphology of S. aureus cells. Regarding the mechanism, the results revealed that L. grata EO increased membrane permeability and caused significant membrane damage. Concerning the synergy mechanism, the results revealed that the combination of EO and ampicillin increases membrane permeability and causes considerable membrane damage, further inhibiting bacteria synergistically. The findings obtained here suggest that L. grata EO in combination with ampicillin could be a viable treatment option against S. aureus infections, including MRSA strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data and material are available with the corresponding author.

Code Availability

Not applicable.

References

  1. Salmanov A, Shchehlov D, Svyrydiuk O, Bortnik I, Mamonova M, Korniyenko S, Rud V, Artyomenko V, Gudym M, Maliarchuk R, Bondar T (2023) Epidemiology of healthcare-associated infections and mechanisms of antimicrobial resistance of responsible pathogens in Ukraine: a multicentre study. J Hosp Infect 131:129–138

    Article  CAS  PubMed  Google Scholar 

  2. Muhammad MH, Idris AL, Fan X, Guo Y, Yu Y, Jin X, Qiu J, Guan X, Huang T (2020) Beyond risk: bacterial biofilms and their regulating approaches. Front Microbiol 11(928):1–20. https://doi.org/10.3389/fmicb.2020.00928

    Article  Google Scholar 

  3. Yin W, Wang Y, Liu L, He J (2019) Biofilms: the microbial “protective clothing” in extreme environments. Int J Mol Sci 20(14):3423. https://doi.org/10.3390/ijms20143423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sultan AR, Swierstra JW, Lemmens-den Toom NA, Snijders SV, Hansenova Manaskova S, Verbon A et al (2018) Production of Staphylococcal complement inhibitor (SCIN) and other immune modulators during the early stages of Staphylococcus aureus biofilm formation in a mammalian cell culture medium. Infect Immun. https://doi.org/10.1128/IAI.00352-18

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sultan AR, Hoppenbrouwers T, Lemmens-den Toom NA, Snijders SV, van Neck JW, Verbon A et al (2019) During the early stages of Staphylococcus aureus Biofilm formation, induced Neutrophil Extracellular Traps (NETs) are degraded by Autologous Thermonuclease. Infect Immun. https://doi.org/10.1128/IAI.00605-19

    Article  PubMed  PubMed Central  Google Scholar 

  6. Boucher H, Miller LG, Razonable RR (2010) Serious infections caused by methicillin-resistant Staphylococcus aureus. Clin Infect Dis 51(Supplement_2):S183–S197. https://doi.org/10.1086/653519

    Article  CAS  PubMed  Google Scholar 

  7. Cong Y, Yang S, Rao X (2020) Vancomycin resistant Staphylococcus aureus infections: a review of case updating and clinical features. J Adv Res 21:169–176. https://doi.org/10.1016/j.jare.2019.10.005

    Article  PubMed  Google Scholar 

  8. Chaney SB, Ganesh K, Mathew-Steiner S, Stromberg P, Roy S, Sen CK, Wozniak DJ (2017) Histopathological comparisons of Staphylococcus aureus and Pseudomonas aeruginosa experimental infected porcine burn wounds. Wound Rep Reg 25(3):541–549. https://doi.org/10.1111/wrr.12527

    Article  Google Scholar 

  9. Hardy BL, Bansal G, Hewlett KH, Arora A, Schaffer SD, Kamau E, Bennett JW, Merrell DS (2020) Antimicrobial activity of clinically isolated bacterial species against Staphylococcus aureus. Front Microbiol 10:2977. https://doi.org/10.3389/fmicb.2019.02977

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lu L, Hu W, Tian Z, Yuan D, Yi G, Zhou Y, Cheng Q, Zhu J, Li M (2019) Developing natural products as potential anti-biofilm agents. Chin Med 14(1):1–17. https://doi.org/10.1186/s13020-019-0232-2

    Article  Google Scholar 

  11. Tariq S, Wani S, Rasool W, Shafi K, Bhat MA, Prabhakar A, Shalla AH, Rather MA (2019) A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb Pathog 134:103580. https://doi.org/10.1016/j.micpath.2019.103580

    Article  CAS  PubMed  Google Scholar 

  12. Pandini JA, Pinto FGS, Scur MC, Santana CB, Costa WF, Temponi LG (2017) Chemical composition, antimicrobial and antioxidant potential of the essential oil of Guarea kunthiana A. Juss Braz J Biol 78:53–60. https://doi.org/10.1590/1519-6984.04116

    Article  PubMed  Google Scholar 

  13. Pérez Zamora CM, Torres CA, Nuñez MB (2018) Antimicrobial activity and chemical composition of essential oils from Verbenaceae species growing in South America. Mol 23(3):544. https://doi.org/10.3390/molecules23030544

    Article  CAS  Google Scholar 

  14. Ravindran P (2018) The Encyclopedia of Herbs and Spices. CABI Publishing, Wallingford

    Google Scholar 

  15. Oliveira TNS, Silva-Filho CMS, Malveira EA, Aguiar TKB, Santos HS, Albuquerque CC, Moraes MB, Teixeira EH, Vasconcelos MA (2021) Antifungal and antibiofilm activities of the essential oil of leaves from Lippia gracilis Schauer against phytopathogenic fungi. J Appl Microbiol 130(4):1117–1129. https://doi.org/10.1111/jam.14857

    Article  CAS  PubMed  Google Scholar 

  16. Sarrazin SLF, Silva LA, Oliveira RB, Raposo JDA, Silva JKR, Salimena FRG, Maia JGS, Mourão RHV (2015) Antibacterial action against food-borne microorganisms and antioxidant activity of carvacrol-rich oil from Lippia origanoides Kunth. Lipids Health Dis 14(1):1–8. https://doi.org/10.1186/s12944-015-0146-7

    Article  CAS  Google Scholar 

  17. Silva RS, Oliveira MMG, Melo JO, Blank AF, Corrêa CB, Scher R, Fernandes RPM (2019) Antimicrobial activity of Lippia gracilis essential oils on the plant pathogen Xanthomonas campestris pv. campestris and their effect on membrane integrity. Pestic Biochem Phys 160:40–48. https://doi.org/10.1016/j.pestbp.2019.06.014

    Article  CAS  Google Scholar 

  18. [CLSI] Clinical and Laboratory Standards Institute (2015) Method for Dilution Antibacterial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Standard – 10th ed. CLSI document M07-A10.

  19. Vale JPC, Vasconcelos MA, Arruda FVS, Firmino NCS, Pereira AL, Andrade AL, Saker-Sampaio S, Sampaio AH, Marinho EM, Teixeira AMR, Marinho MM, Rodrigues THS, Teixeira EH, Santos HS (2021) Evaluation of antimicrobial and antioxidant potential of essential oil from Croton piauhiensis Müll. Arg Curr Microbiol 78(5):1926–1938. https://doi.org/10.1007/s00284-021-02449-1

    Article  CAS  PubMed  Google Scholar 

  20. Rosato A, Vitali C, Laurentis N, Armenise D, Milillo MA (2007) Antibacterial effect of some essential oils administered alone or in combination with Norfloxacin. Phytomed 14(11):727–732. https://doi.org/10.1016/j.phymed.2007.01.005

    Article  CAS  Google Scholar 

  21. Lechartier B, Hartkoorn RC, Cole ST (2012) In vitro combination studies of benzothiazinone lead compound BTZ043 against Mycobacterium tuberculosis. Antimicrob Agents Chemother 56(11):5790–5793. https://doi.org/10.1128/AAC.01476-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40(2):175–179. https://doi.org/10.1016/S0167-7012(00)00122-6

    Article  PubMed  Google Scholar 

  23. Vasconcelos MA, Arruda FV, Santos HS, Rodrigues AS, Bandeira PN, Albuquerque MRJR, Cavada BS, Teixeira EH, Henriques M, Pereira MO (2014) Effect of a casbane diterpene isolated from Croton nepetaefolius on the prevention and control of biofilms formed by bacteria and Candida species. Ind Crops Prod 61:499–509. https://doi.org/10.1016/j.indcrop.2014.07.027

    Article  CAS  Google Scholar 

  24. Howden BP, Seemann T, Harrison PF, McEvoy CR, Stanton JAL, Rand CJ, Mason WC, Jensen OS, Firth N, Davies KJ, Johnson DRP, Stinear TP (2010) Complete genome sequence of Staphylococcus aureus strain JKD6008, an ST239 clone of methicillin-resistant Staphylococcus aureus with intermediate-level vancomycin resistance. J Bacteriol 192(21):5848–5849. https://doi.org/10.1128/JB.00951-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sharma D, Misba L, Khan AU (2019) Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control 8(1):1–10. https://doi.org/10.1186/s13756-019-0533-3

    Article  Google Scholar 

  26. Chouhan S, Sharma K, Guleria S (2017) Antimicrobial activity of some essential oils—present status and future perspectives. Medicine 4(3):58. https://doi.org/10.3390/medicines4030058

    Article  CAS  Google Scholar 

  27. Ghavam M, Manca ML, Manconi M, Bacchetta G (2020) Chemical composition and antimicrobial activity of essential oils obtained from leaves and flowers of Salvia hydrangea DC. ex Benth. Sci Rep 10(1):1–10. https://doi.org/10.1038/s41598-020-73193-y

    Article  CAS  Google Scholar 

  28. Martínez A, Manrique-Moreno M, Klaiss-Luna MC, Stashenko E, Zafra G, Ortiz C (2021) Effect of essential oils on growth inhibition, biofilm formation and membrane integrity of Escherichia coli and Staphylococcus aureus. Antibiotic 10(12):1474. https://doi.org/10.3390/antibiotics10121474

    Article  CAS  Google Scholar 

  29. Miranda-Cadena K, Marcos-Arias C, Mateo E, Aguirre-Urizar JM, Quindós G, Eraso E (2021) In vitro activities of carvacrol, cinnamaldehyde and thymol against Candida biofilms. Biomed Pharmacother 143:112218. https://doi.org/10.1016/j.biopha.2021.112218

    Article  CAS  PubMed  Google Scholar 

  30. Haney EF, Trimble MJ, Cheng JT, Vallé Q, Hancock RE (2018) Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomol 8(2):29. https://doi.org/10.3390/biom8020029

    Article  CAS  Google Scholar 

  31. Peechakara BV, Gupta M (2021) Ampicillin/sulbactam. StatPearls Publishing, St. Petersburg

    Google Scholar 

  32. Salamaga B, Kong L, Pasquina-Lemonche L, Lafage L, von und zur Muhlen M, Gibson JF, Grybchuk D, Tooke AK, Panchal V, Culp EJ, Tatham E, O’Kane ME, Catley TE, Renshaw SA, Wright GD, Plevka P, Bullough PA, Han A, Hobbs JK, Foster SJ (2021) Demonstration of the role of cell wall homeostasis in Staphylococcus aureus growth and the action of bactericidal antibiotics. Proc Nat Acad Sci 118(44):e2106022118. https://doi.org/10.1073/pnas.2106022118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mahboubi M, Bidgoli FG (2010) Antistaphylococcal activity of Zataria multiflora essential oil and its synergy with vancomycin. Phytomed 17(7):548–550. https://doi.org/10.1016/j.phymed.2009.11.004

    Article  CAS  Google Scholar 

  34. Veras HN, Rodrigues FF, Colares AV, Menezes IR, Coutinho HD, Botelho MA, Costa JG (2012) Synergistic antibiotic activity of volatile compounds from the essential oil of Lippia sidoides and thymol. Fitoterap 83(3):508–512. https://doi.org/10.1016/j.fitote.2011.12.024

    Article  CAS  Google Scholar 

  35. Palaniappan K, Holley RA (2010) Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int J Food Microbiol 140(2–3):164–168. https://doi.org/10.1016/j.ijfoodmicro.2010.04.001

    Article  CAS  PubMed  Google Scholar 

  36. Mah TF (2012) Biofilm-specific antibiotic resistance. Futre Microbiol 7(9):1061–1072. https://doi.org/10.2217/fmb.12.76

    Article  CAS  Google Scholar 

  37. Nazzaro F, Fratianni F, Martino L, Coppola R, Feo V (2013) Effect of essential oils on pathogenic bacteria. Pharm 6(12):1451–1474. https://doi.org/10.3390/ph6121451

    Article  CAS  Google Scholar 

  38. Kachur K, Suntres Z (2020) The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit Rev Food Sci Nutri 60(18):3042–3053

    Article  CAS  Google Scholar 

  39. Veldhuizen EJ, Tjeerdsma-van Bokhoven JL, Zweijtzer C, Burt SA, Haagsman HP (2006) Requisitos estruturais para a atividade antimicrobiana do carvacrol. J Quím Agr Aliment 54(5):1874–1879. https://doi.org/10.1021/jf052564y

    Article  CAS  Google Scholar 

  40. Agreles MAA, Cavalcanti IDL, Cavalcanti IMF (2021) The role of essential oils in the inhibition of efflux pumps and reversion of bacterial resistance to antimicrobials. Curr Microbiol 78(10):3609–3619. https://doi.org/10.1007/s00284-021-02635-1

    Article  CAS  PubMed  Google Scholar 

  41. Sharma A, Gupta VK, Pathania R (2019) Efflux pump inhibitors for bacterial pathogens: from bench to bedside. Indian J Med Res 149(2):129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miladi H, Zmantar T, Chaabouni Y, Fedhila K, Bakhrouf A, Mahdouani K, Chaieb K (2016) Antibacterial and efflux pump inhibitors of thymol and carvacrol against food-borne pathogens. Microb Pathog 99:95–100. https://doi.org/10.1016/j.micpath.2016.08.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Central Analítica-UFC/CT-INFRA/MCTI-SISNANO/Pró-Equipamentos CAPES.

Funding

This research was funded by FAPEMIG (Grant#: APQ-00224-2 and APQ-02972-22 for Mayron Alves de Vasconcelos).

Author information

Authors and Affiliations

Authors

Contributions

APRL, ALA, AAP, LSS, and EAM—Contributed to antibacterial and antibiofilm activities and writing of the manuscript. FFMO—Contributed to the plant material collection and essential oil extraction. EHT, CCA, and MAV—Contributed to the analysis of the data, critical reading, draft of the manuscript, and design of the study, and supervised the laboratory work.

Corresponding author

Correspondence to Mayron Alves de Vasconcelos.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, A.P.R., Andrade, A.L., Pinheiro, A.d. et al. Lippia grata Essential Oil Acts Synergistically with Ampicillin Against Staphylococcus aureus and its Biofilm. Curr Microbiol 81, 176 (2024). https://doi.org/10.1007/s00284-024-03690-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03690-0

Navigation