Skip to main content
Log in

Rhizosphere-Associated Anammox Bacterial Diversity and Abundance of Nitrogen Cycle-Related Functional Genes of Emergent Macrophytes in Eutrophic Wetlands

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Rhizospheric microbial community of emergent macrophytes plays an important role in nitrogen removal, especially in the eutrophic wetlands. The objective of this study was to identify the differences in anammox bacterial community composition among different emergent macrophytes and investigate revealed the the main factors affecting on the composition, diversity, and abundance of anammox bacterial community. Results showed that the composition, diversity, and abundance of the anammox community were significantly different between the vegetated sediments of three emergent macrophytes and unvegetated sediment. The composition of the anammox bacterial community was different in the vegetated sediments of different emergent macrophytes. Also, the abundance of nitrogen cycle-related functional genes in the vegetated sediments was found to be higher than that in the unvegetated sediment. Canonical correspondence analysis (CCA) and structural equation models analysis (SEM) showed that salinity and pH were the main environmental factors influencing the composition and diversity of the anammox bacterial community and NO2-N indirectly affected anammox bacterial community diversity by affecting TOC. nirK-type denitrifying bacteria abundance had significant effects on the bacterial community composition, diversity, and abundance of anammox bacteria. The community composition of anammox bacteria varies with emergent macrophyte species. The rhizosphere of emergent macrophytes provides a favorable environment and promotes the growth of nitrogen cycling-related microorganisms that likely accelerate nitrogen removal in eutrophic wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Code Availability

Not applicable.

References

  1. Bhagowati B, Ahamad KU (2018) A review on lake eutrophication dynamics and recent developments in lake modeling. Ecohydrol Hydrobiol 19(1):155–166. https://doi.org/10.1016/j.ecohyd.2018.03.002

    Article  Google Scholar 

  2. Mulder A, VandeGraaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. FEMS Microbiol Ecol 16:177–184. https://doi.org/10.1016/0168-6496(94)00081-7

    Article  CAS  Google Scholar 

  3. Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol 68:1312–1318. https://doi.org/10.1128/AEM.68.3.1312-1318.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nie S, Li H, Yang XY, Zhang ZJ, Weng B, Huang FY, Zhu GB, Zhu YG (2015) Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere. ISME J. https://doi.org/10.1038/ismej.2015.25

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hua YM, Peng L, Zhang SH, Heal KV, Zhao JW, Zhu DW (2017) Effects of plants and temperature on nitrogen removal and microbiology in pilot-scale horizontal subsurface flow constructed wetlands treating domestic wastewater. Ecol Eng 108:70–77. https://doi.org/10.1016/j.ecoleng.2017.08.007

    Article  Google Scholar 

  6. Zheng YL, Jiang XF, Hou LJ, Liu M, Lin XB, Gao J, Li XF, Yin GY, Yu CD, Wang R (2016) Shifts in the community structure and activity of anaerobic ammonium oxidation bacteria along an estuarine salinity gradient. J Geophys Res Biogeosci. https://doi.org/10.1002/2015JG003300

    Article  Google Scholar 

  7. Bai R, Xi D, He JZ, Hu HW, Fang YT, Zhang LM (2015) Activity, abundance and community structure of anammox bacteria along depth profiles in three different paddy soils. Soil Biol Biochem 91:212–221. https://doi.org/10.1016/j.soilbio.2015.08.040

    Article  CAS  Google Scholar 

  8. Zhu GB, Wang SY, Wang C, Zhou LG, Zhao SY, Li YX, Li FB, Jetten MSM, Lu YL, Schwark L (2019) Resuscitation of anammox bacteria after > 10,000 years of dormancy. ISME J 13:1098–1109. https://doi.org/10.1038/s41396-018-0316-5

    Article  CAS  PubMed  Google Scholar 

  9. Lipsewers YA, Bale NJ, Hopmans EC, Schouten S, Sinninghe Damste JS, Villanueva L (2014) Seasonality and depth distribution of the abundance and activity of ammonia oxidizing microorganisms in marine coastal sediments (North Sea). Front Microbio 5:472. https://doi.org/10.3389/fmicb.2014.00472

    Article  Google Scholar 

  10. Humbert S, Tarnawski S, Fromin N, Mallet MP, Aragno M, Zopfi J (2010) Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. ISME J 4:450–454. https://doi.org/10.1038/ismej.2009.125

    Article  PubMed  Google Scholar 

  11. Srivastava J, Gupta A, Chandra H (2008) Managing water quality with aquatic macrophytes. Rev Environ Sci Biotech 7:255–266. https://doi.org/10.1007/s11157-008-9135-x

    Article  CAS  Google Scholar 

  12. Dhote S, Dixit S (2009) Water quality improvement through macrophytes-a review. Environ Monit Assess 152:149–153. https://doi.org/10.1007/s10661-008-0303-9

    Article  CAS  PubMed  Google Scholar 

  13. Cui J, Zhao J, Wang Z, Cao WW, Zhang SH, Liu JM, Bao ZH (2020) Diversity of active root-associated methanotrophs of three emergent plants in a eutrophic wetland in northern China. AMB Expr 10:48. https://doi.org/10.1186/s13568-020-00984-x

    Article  Google Scholar 

  14. Zhao JW, Xu YF, Peng L, Liu GL, Wan XQ, Hua YM, Zhu DW, Hamilton DP (2019) Diversity of anammox bacteria and abundance of functional genes for nitrogen cycling in the rhizosphere of submerged macrophytes in a freshwater lake in summer. J Soil Sediments 19:3648–3656. https://doi.org/10.1007/s11368-019-02340-4

    Article  CAS  Google Scholar 

  15. Wang SY, Pi YX, Jiang YY, Pan HW, Wang XX, Wang XM, Zhou JM, Zhu GB (2019) Nitrate reduction in the reed rhizosphere of a riparian zone: from functional genes to activity and contribution. Environ Res. https://doi.org/10.1016/j.envres.2019.108867

    Article  PubMed  PubMed Central  Google Scholar 

  16. Duan XN, Wang XK, Mu YJ, Ouyang ZY (2005) Seasonal and diurnal variations in methane emissions from Wuliangsu Lake in arid regions of China. Atmos Environ 39:4479–4487. https://doi.org/10.1016/j.atmosenv.2005.03.045

    Article  CAS  Google Scholar 

  17. Vymazal J (2013) Emergent plants used in free water surface constructed wetlands: a review. Ecol Eng 61:582–592. https://doi.org/10.1016/j.ecoleng.2013.06.023

    Article  Google Scholar 

  18. Zhang SH, Cui J, Zhang M, Liu JM, Wang LX, Zhao J, Bao ZH (2021) Diversity of active anaerobic ammonium oxidation (ANAMMOX) and nirK-type denitrifying bacteria in macrophyte roots in a eutrophic wetland. J Soil Sediment 21:2465–2473. https://doi.org/10.1007/s11368-021-02926-x

    Article  CAS  Google Scholar 

  19. Paranychianakis NV, Tsiknia M, Kalogerakis N (2016) Pathways regulating the removal of nitrogen in planted and unplanted subsurface flow constructed wetlands. Water Res 102:321–329. https://doi.org/10.1016/j.watres.2016.06.048

    Article  CAS  PubMed  Google Scholar 

  20. Racchetti E, Longhi D, Ribaudo C, Soana E, Bartoli M (2017) Nitrogen uptake and coupled nitrification-denitrification in riverine sediments with benthic microalgae and rooted macrophytes. Aquat Sci 79:487–505. https://doi.org/10.1007/s00027-016-0512-1

    Article  CAS  Google Scholar 

  21. Zhou XH, Zhang JP, Li YM, Liu B, Chu JY, Wang MY, He ZL (2016) Distribution characteristics of ammonia oxidizing microorganisms in rhizosphere sediments of cattail. Ecol eng 88:99–111. https://doi.org/10.1016/j.ecoleng.2015.12.023

    Article  Google Scholar 

  22. Zhou XH, Zhang JP, Wen CZ (2017) Community composition and abundance of anammox bacteria in cattail rhizosphere sediments at three phenological stages. Curr Microbiolo 74:1349–1357. https://doi.org/10.1007/s00284-017-1324-9

    Article  CAS  Google Scholar 

  23. Su R, Huang R, Zeng J, Zhan DY, He RJ, Yu ZB, Wu QL (2021) Rhizosphere-associated nosZII microbial community of Phragmites australis and its influence on nitrous oxide emissions in two different regions. J Soils Sediments 21:3326–3341. https://doi.org/10.1007/s11368-021-02967-2

    Article  CAS  Google Scholar 

  24. Li H, Yang XR, Weng BS, Su JQ, Nie SA, Gilbert JA, Zhu YG (2016) The phenological stage of rice growth determines anaerobic ammonium oxidation activity in rhizosphere soil. Soil Biol Biochem 100:59–65. https://doi.org/10.1016/j.soilbio.2016.05.015

    Article  CAS  Google Scholar 

  25. Zhao DY, Luo J, Zeng J, Wang M, Yan WM, Huang R, Wu QL (2014) Effects of submerged macrophytes on the abundance and community composition of ammonia-oxidizing prokaryotes in a eutrophic lake. Environ Sci Pollut Res 21(1):389–398. https://doi.org/10.1007/s11356-013-1909-1

    Article  Google Scholar 

  26. He YL, Tao WD, Wang ZY, Shayya W (2012) Effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in free-water surface wetlands. J Environ Manage 110:103–109. https://doi.org/10.1016/j.jenvman.2012.06.009

    Article  CAS  PubMed  Google Scholar 

  27. Sun HY, Lu XX, Yu RH, Yang J, Liu XY, Cao ZX, Zhang ZZ, Li MX (2021) Geng Y (2021) Eutrophication decreased CO2 but increased CH4 emissions from lake: a case study of a shallow Lake Ulansuhai. Water Res 201:117363. https://doi.org/10.1016/j.watres.2021.117363

    Article  CAS  PubMed  Google Scholar 

  28. Liu JM, Bao ZH, Cao WW, Han JJ, Zhao J, Kang ZZ, Wang LX, Zhao J (2020) Enrichment of type I methanotrophs with nirs genes of three emergent macrophytes in a eutrophic wetland in China. Microbes Environ. https://doi.org/10.1264/jsme2.me19098

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luo Y, Yuan H, Zhao J, Qi Y, Cao WW, Liu JM, Guo W, Bao ZH (2021) Multiple factors influence bacterial community diversity and composition in soils with rare earth element and heavy metal co-contamination. Ecotox Environ Safe 225:112749. https://doi.org/10.1016/j.ecoenv.2021.112749

    Article  CAS  Google Scholar 

  31. Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, Mellado-Vazquez PG, Malik AA, Roy J, Scheu S, Steinbeiss S, Thomson BC, Trumbore SE, Gleixner G (2015) Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun 6:6707. https://doi.org/10.1038/ncomms7707

    Article  CAS  PubMed  Google Scholar 

  32. Bodelier PLE, Libochant JA, Blom CWPM, Laanbroek HJ (1996) Dynamics of nitrification and denitrification in root-oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitat. Appl Environ Microbiol 62(11):4100–4107. https://doi.org/10.1016/S0027-5107(96)00126-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ottosen LDM, Risgaard-Petersen N, Nielsen LP (1999) Direct and indirect measurements of nitrification and denitrification in the rhizosphere of aquatic macrophytes. Aquat Microb Ecol 19:81–91. https://doi.org/10.3354/ame019081

    Article  Google Scholar 

  34. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interations with plants and other organisms. Annu Rev Plant Biol 57:233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159

    Article  CAS  PubMed  Google Scholar 

  35. Yin XJ, Lu J, Wang YC, Liu GL, Hua YM, Wan XQ, Zhao JW, Zhu DW (2020) The abundance of nirS-type denitrifiers and anammox bacteria in rhizospheres was affected by the organic acids secreted from roots of submerged macrophytes. Chemosphere 240:124903. https://doi.org/10.1016/j.chemosphere.2019.124903

    Article  CAS  PubMed  Google Scholar 

  36. Fu LL, Chen YY, Li SQ, He H, Mi TZ, Zhen Y, Yu ZG (2019) Shifts in the anammox bacterial community structure and abundance in sediments from the changjiang estuary and its adjacent area. Syst Appl Microbiol 42:383–396. https://doi.org/10.1016/j.syapm.2018.12.008

    Article  CAS  PubMed  Google Scholar 

  37. Chu JY, Zhang JP, Zhou XH, Liu B, Li YM (2015) A Comparison of anammox bacterial abundance and community structures in three different emerged plants-related sediments. Curr Microbiol 71(3):421–427. https://doi.org/10.1007/s00284-015-0851-5

    Article  CAS  PubMed  Google Scholar 

  38. Hu JL, Zhou YH, Lei ZY, Liu GL, Hua YM, Zhou WB, Wan XQ, Zhu DW, Zhao JW (2020) Effects of Potamogeton crispus decline in the rhizosphere on the abundance of anammox bacteria and nirS denitrifying bacteria. Environ Pollut 260:114018. https://doi.org/10.1016/j.envpol.2020.114018

    Article  CAS  PubMed  Google Scholar 

  39. Awata T, Oshiki M, Kindaichi T, Ozaki N, Ohashi A, Okabe S (2013) Physiological characterization of an anaerobic ammonium-oxidizing bacterium belonging to the “Candidatus scalindua” group. Appl Environ Microbiol 79:4145–4148. https://doi.org/10.1128/AEM.00056-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339. https://doi.org/10.1007/s11104-009-9895-2

    Article  CAS  Google Scholar 

  41. Liu D, Fang S, Tian Y, Chang SX (2014) Nitrogen transformations in the rhizosphere of different tree types in a seasonally flooded soil. Plant Soil Environ 60:249–254. https://doi.org/10.1270/jsbbs.64.193

    Article  CAS  Google Scholar 

  42. Zheng YL, Hou LJ, Liu M, Yin GY, Gao J, Jiang XF, Lin XB, Li XF, Yu CD, Wang R (2016) Community composition and activity of anaerobic ammonium oxidation bacteria in the rhizosphere of salt-marsh grass Spartina alterniflora. Appl Microbio Biotech 100(18):8203–8212. https://doi.org/10.1007/s00253-016-7625-2

    Article  CAS  Google Scholar 

  43. Fu BB, Liu JW, Yang HM, Chang T, Hsu TC, He BY, Dai MH, Kao SJ, Zhao MX, Zhang XH (2015) Shift of anammox bacterial community structure along the Pearl Estuary and the impact of environmental factors. J Geophys Res Oceans 120:2869–2883. https://doi.org/10.1002/2014JC010554

    Article  Google Scholar 

  44. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, MoenneLoccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361. https://doi.org/10.1007/s11104-008-9568-6

    Article  CAS  Google Scholar 

  45. Weng BS, Xie XY, Yang JJ, Liu JC, Lu HL, Yan CL (2013) Research on the nitrogen cycle in rhizosphere of Kandelia obovata under ammonium and nitrate addition. Mar Pollut Bull 76:227–240. https://doi.org/10.1016/j.marpolbul.2013.08.034

    Article  CAS  PubMed  Google Scholar 

  46. Chen T, Hu WG, He SB, Zhang X, Niu YH (2020) Diversity and community structure of ammonia-oxidizing archaea in rhizosphere soil of four plant groups in Ebinur Lake wetland. Can J Microbio 67(4):271–280. https://doi.org/10.1139/cjm-2020-0228

    Article  CAS  Google Scholar 

  47. Subbarao GV, Ishikawa T, Ito O, Nakahara K, Wang HY, Berry WL (2006) A biolumiuescence assay to detect nitrification inhibitors released from plant roots: a case study with Brachiaria humidicola. Plant Soil 288:101–112. https://doi.org/10.1007/s11104-006-9094-3

    Article  CAS  Google Scholar 

  48. Yang XR, Li H, Nie SA, Su JQ, Weng BS, Zhu GB, Yao HY, Gilbert JA, Zhu YG (2015) Potential contribution of anammox to nitrogen loss from paddy soils in southern china. Appl Environ Microbiol 81:938–947. https://doi.org/10.1128/AEM.02664-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Strous M, Kuenen JG, Jetten MS (1999) Key physiology of anaerobic ammonium oxidation. Appl Environ Microbio 65:3248–3250. https://doi.org/10.1128/AEM.65.7.3248-3250.1999

    Article  CAS  Google Scholar 

  50. Zhou S, Borjigin S, Riya SH, Terada A, Hosomi M (2014) The relationship between anammox and denitrification in the sediment of an inland river. Sci Total Environ 490:1029–1036. https://doi.org/10.1016/j.scitotenv.2014.05.096

    Article  CAS  PubMed  Google Scholar 

  51. Kumar M, Lin JG (2010) Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal-Strategies and issues. J Hazard Mater 178:1–9. https://doi.org/10.1016/j.jhazmat.2010.01.077

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Science and Technology Major Project on Lakes of Inner Mongolia grant (ZDZX2018054), National Natural Science Foundation of China grants (32160028).

Author information

Authors and Affiliations

Authors

Contributions

ZSH: Conceptualization, Investigation, Formal analysis, Writing—original draft, Writing—review & editing. ZD: Investigation, Data analysis. GY: Investigation, Data analysis. ZJ: Conceptualization, Investigation, Writing—review&editing. BZH: Conceptualization, Investigation, Formal analysis, Writing—original draft, Writing—review & editing.

Corresponding author

Correspondence to Shaohua Zhang.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Consent to Participate

All the authors agree to participate.

Consent for Publication

All the authors agree to submit the paper to Curr Microbiol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

High-quality anammox hzsB genes high-throughput sequencing data were submitted to GenBank (accession number: SRR12199323-SRR12199326)

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 276 KB)

Supplementary file2 (PPTX 276 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhang, D., Guo, Y. et al. Rhizosphere-Associated Anammox Bacterial Diversity and Abundance of Nitrogen Cycle-Related Functional Genes of Emergent Macrophytes in Eutrophic Wetlands. Curr Microbiol 81, 107 (2024). https://doi.org/10.1007/s00284-024-03620-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03620-0

Navigation