Skip to main content

Advertisement

Log in

Forskolin Enhances Antitumor Effect of Oncolytic Measles Virus by Promoting Rab27a Dependent Vesicular Transport System

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The measles vaccine virus strain (MV-Edm) serves as a potential platform for the development of effective oncolytic vectors. Nevertheless, despite promising pre-clinical data, our comprehension of the factors influencing the efficacy of MV-Edm infection and intratumoral spread, as well as the interactions between oncolytic viruses and specific chemotherapeutics associated with viral infection, remains limited. Therefore, we investigated the potency of Forskolin in enhancing the antitumor effect of oncolytic MV-Edm by promoting the Rab27a-dependent vesicular transport system. After infecting cells with MV-Edm, we observed an increased accumulation of cytoplasmic vesicles. Our study demonstrated that MV-Edm infection and spread in tumors, which are indispensable processes for viral oncolysis, depend on the vesicular transport system of tumor cells. Although tumor cells displayed a responsive mechanism to restrain the MV-Edm spread by down-regulating the expression of Rab27a, a key member of the vesicle transport system, over-expression of Rab27a promoted the oncolytic efficacy of MV-Edm towards A549 tumor cells. Additionally, we found that Forskolin, a Rab27a agonist, was capable of promoting the oncolytic effect of MV-Edm in vitro. Our study revealed that the vesicle transporter Rab27a could facilitate the secretion of MV-Edm and the generation of syncytial bodies in MV-Edm infected cells during the MV-Edm-mediated oncolysis pathway. The results of the study demonstrate that a combination of Forskolin and MV-Edm exerts a synergistic anti-tumor effect in vitro, leading to elevated oncolysis. This finding holds promise for the clinical treatment of patients with tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

We can share our data if needed.

Abbreviations

DMEM:

Dulbecco’s modified eagle medium

MV-Edm:

Attenuated measles virus of the Edmonston strain

PBS:

Phosphate-buffered saline

RT-PCR:

Reverse transcription polymerase chain reaction

TCID50:

Tissue culture infective dose

References

  1. Mondal M, Guo J, He P, Zhou D (2020) Recent advances of oncolytic virus in cancer therapy. Hum Vaccin Immunother. https://doi.org/10.1080/21645515.2020.1723363

    Article  PubMed  PubMed Central  Google Scholar 

  2. Msaouel P, Opyrchal M, Dispenzieri A, Peng KW, Federspiel MJ, Russell SJ, Galanis E (2018) Clinical trials with oncolytic measles virus: current status and future prospects. Curr Cancer Drug Targets 18(2):177–187. https://doi.org/10.2174/1568009617666170222125035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bhattacharjee S, Yadava PK (2018) Measles virus: background and oncolytic virotherapy. Biochem Biophys Rep 13:58–62. https://doi.org/10.1016/j.bbrep.2017.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  4. Navaratnarajah CK, Oezguen N, Rupp L, Kay L, Leonard VH, Braun W, Cattaneo R (2011) The heads of the measles virus attachment protein move to transmit the fusion-triggering signal. Nat Struct Mol Biol 18(2):128–134. https://doi.org/10.1038/nsmb.1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kozlov MM, McMahon HT, Chernomordik LV (2010) Protein-driven membrane stresses in fusion and fission. Trends Biochem Sci 35(12):699–706. https://doi.org/10.1016/j.tibs.2010.06.00

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fung KYY, Fairn GD, Lee WL (2018) Transcellular vesicular transport in epithelial and endothelial cells: challenges and opportunities. Traffic 19(1):5–18. https://doi.org/10.1111/tra.12533

    Article  CAS  PubMed  Google Scholar 

  7. Fregno I, Fasana E, Bergmann TJ, Raimondi A, Loi M, Solda T, Galli C, D’Antuono R, Morone D, Danieli A, Paganetti P, van Anken E, Molinari M (2018) ER-to-lysosome-associated degradation of proteasome-resistant ATZ polymers occurs via receptor-mediated vesicular transport. EMBO J. https://doi.org/10.15252/embj.201899259

    Article  PubMed  PubMed Central  Google Scholar 

  8. Veleri S, Punnakkal P, Dunbar GL, Maiti P (2018) Molecular insights into the roles of Rab proteins in intracellular dynamics and neurodegenerative diseases. Neuromolecular Med 20(1):18–36. https://doi.org/10.1007/s12017-018-8479-9

    Article  CAS  PubMed  Google Scholar 

  9. Miaczynska M, Munson M (2020) Membrane trafficking: vesicle formation, cargo sorting and fusion. Mol Biol Cell 31(6):399–400. https://doi.org/10.1091/mbc.E19-12-0680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shikanai M, Yuzaki M, Kawauchi T (2018) Rab family small GTPases-mediated regulation of intracellular logistics in neural development. Histol Histopathol 33(8):765–771. https://doi.org/10.14670/HH-11-956

    Article  CAS  PubMed  Google Scholar 

  11. Langemeyer L, Frohlich F, Ungermann C (2018) Rab GTPase function in endosome and lysosome biogenesis. Trends Cell Biol. https://doi.org/10.1016/j.tcb.2018.06.007

    Article  PubMed  Google Scholar 

  12. Spearman P (2018) Viral interactions with host cell Rab GTPases. Small GTPases 9(1–2):192–201. https://doi.org/10.1080/21541248.2017.1346552

    Article  CAS  PubMed  Google Scholar 

  13. Bearer EL, Wu C (2019) Herpes simplex virus, Alzheimer’s disease and a possible role for rab GTPases, front cell. Dev Biol 7:134. https://doi.org/10.3389/fcell.2019.00134

    Article  Google Scholar 

  14. Bello-Morales R, Crespillo AJ, Fraile-Ramos A, Tabares E, Alcina A, Lopez-Guerrero JA (2012) Role of the small GTPase Rab27a during herpes simplex virus infection of oligodendrocytic cells. BMC Microbiol 12:265. https://doi.org/10.1186/1471-2180-12-265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zenner HL, Yoshimura S, Barr FA, Crump CM (2011) Analysis of Rab GTPase-activating proteins indicates that Rab1a/b and Rab43 are important for herpes simplex virus 1 secondary envelopment. J Virol 85(16):8012–8021. https://doi.org/10.1128/JVI.00500-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de Castro Martin IF, Fournier G, Sachse M, Pizarro-Cerda J, Risco C, Naffakh N (2017) Influenza virus genome reaches the plasma membrane via a modified endoplasmic reticulum and Rab11-dependent vesicles. Nat Commun. https://doi.org/10.1038/s41467-017-01557-6

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vale-Costa S, Alenquer M, Sousa AL, Kellen B, Ramalho J, Tranfield EM, Amorim MJ (2016) Influenza A virus ribonucleoproteins modulate host recycling by competing with Rab11 effectors. J Cell Sci 129(8):1697–1710. https://doi.org/10.1242/jcs.188409

    Article  CAS  PubMed  Google Scholar 

  18. Katoh H, Nakatsu Y, Kubota T, Sakata M, Takeda M, Kidokoro M (2015) Mumps virus is released from the apical surface of polarized epithelial cells, and the release is facilitated by a rab11-mediated transport system. J Virol 89(23):12026–12034. https://doi.org/10.1128/JVI.02048-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakatsu Y, Ma X, Seki F, Suzuki T, Iwasaki M, Yanagi Y, Komase K, Takeda M (2013) Intracellular transport of the measles virus ribonucleoprotein complex is mediated by Rab11A-positive recycling endosomes and drives virus release from the apical membrane of polarized epithelial cells. J Virol 87(8):4683–4693. https://doi.org/10.1128/JVI.02189-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Murray JL, Mavrakis M, McDonald NJ, Yilla M, Sheng J, Bellini WJ, Zhao L, Le Doux JM, Shaw MW, Luo CC, Lippincott-Schwartz J, Sanchez A, Rubin DH, Hodge TW (2005) Rab9 GTPase is required for replication of human immunodeficiency virus type 1, filoviruses, and measles virus. J Virol 79(18):11742–11751. https://doi.org/10.1128/JVI.79.18.11742-11751.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gerber PP, Cabrini M, Jancic C, Paoletti L, Banchio C, von Bilderling C, Sigaut L, Pietrasanta LI, Duette G, Freed EO, Basile Gde S, Moita CF, Moita LF, Amigorena S, Benaroch P, Geffner J, Ostrowski M (2015) Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate. J Cell Biol 209(3):435–452. https://doi.org/10.1083/jcb.201409082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang MQ, Du Q, Goswami J, Varley PR, Chen B, Wang RH, Morelli AE, Stolz DB, Billiar TR, Li J, Geller DA (2018) Interferon regulatory factor 1-Rab27a regulated extracellular vesicles promote liver ischemia/reperfusion injury. Hepatology 67(3):1056–1070. https://doi.org/10.1002/hep.29605

    Article  CAS  PubMed  Google Scholar 

  23. Feng Y, Zhong X, Tang TT, Wang C, Wang LT, Li ZL, Ni HF, Wang B, Wu M, Liu D, Liu H, Tang RN, Liu BC, Lv LL (2020) Rab27a dependent exosome releasing participated in albumin handling as a coordinated approach to lysosome in kidney disease. Cell Death Dis 11(7):513. https://doi.org/10.1038/s41419-020-2709-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fraile-Ramos A, Cepeda V, Elstak E, van der Sluijs P (2010) Rab27a is required for human cytomegalovirus assembly. PLoS ONE 5(12):e15318. https://doi.org/10.1371/journal.pone.0015318

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Galanis E (2010) Therapeutic potential of oncolytic measles virus: promises and challenges. Clin Pharmacol Ther 88(5):620–625. https://doi.org/10.1038/clpt.2010.211

    Article  CAS  PubMed  Google Scholar 

  26. Loewe D, Dieken H, Grein TA, Weidner T, Salzig D, Czermak P (2020) Opportunities to debottleneck the downstream processing of the oncolytic measles virus. Crit Rev Biotechnol 40(2):247–264. https://doi.org/10.1080/07388551.2019.1709794

    Article  PubMed  Google Scholar 

  27. Xia M, Luo D, Dong J, Zheng M, Meng G, Wu J, Wei J (2019) Graphene oxide arms oncolytic measles virus for improved effectiveness of cancer therapy. J Exp Clin Cancer Res 38(1):408. https://doi.org/10.1186/s13046-019-1410-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gurczynski SJ, Das S, Pellett PE (2014) Deletion of the human cytomegalovirus US17 gene increases the ratio of genomes per infectious unit and alters regulation of immune and endoplasmic reticulum stress response genes at early and late times after infection. J Virol 88(4):2168–2182. https://doi.org/10.1128/JVI.02704-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Woods MW, Kelly JN, Hattlmann CJ, Tong JG, Xu LS, Coleman MD, Quest GR, Smiley JR, Barr SD (2011) Human HERC5 restricts an early stage of HIV-1 assembly by a mechanism correlating with the ISGylation of Gag. Retrovirology 8:95. https://doi.org/10.1186/1742-4690-8-95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dastur A, Beaudenon S, Kelley M, Krug RM, Huibregtse JM (2006) Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells. J Biol Chem 281(7):4334–4338. https://doi.org/10.1074/jbc.M512830200

    Article  CAS  PubMed  Google Scholar 

  31. Teijaro JR, Walsh KB, Cahalan S, Fremgen DM, Roberts E, Scott F, Martinborough E, Peach R, Oldstone MB, Rosen H (2011) Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 146(6):980–991. https://doi.org/10.1016/j.cell.2011.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li Y, He J, Sui S, Hu X, Zhao Y, Li N (2012) Clenbuterol upregulates histone demethylase JHDM2a via the beta2-adrenoceptor/cAMP/PKA/p-CREB signaling pathway. Cell Signal 24(12):2297–2306. https://doi.org/10.1016/j.cellsig.2012.07.010

    Article  CAS  PubMed  Google Scholar 

  33. Passeron T, Bahadoran P, Bertolotto C, Chiaverini C, Busca R, Valony G, Bille K, Ortonne JP, Ballotti R (2004) Cyclic AMP promotes a peripheral distribution of melanosomes and stimulates melanophilin/Slac2-a and actin association. FASEB J 18(6):989–991. https://doi.org/10.1096/fj.03-1240fje

    Article  CAS  PubMed  Google Scholar 

  34. Mehan S, Rahi S, Tiwari A, Kapoor T, Rajdev K, Sharma R, Khera H, Kosey S, Kukkar U, Dudi R (2020) Adenylate cyclase activator forskolin alleviates intracerebroventricular propionic acid-induced mitochondrial dysfunction of autistic rats. Neural Regen Res 15(6):1140–1149. https://doi.org/10.4103/1673-5374.270316

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was supported by the National Natural Science Foundation of China (82073367 and 81903147), Medical School of Nanjing University (2022-LCYJ-MS-28) and Medical School of Nanjing University (2022-LCYJ-PY-20).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Jiawei Zeng and Mao Xia. Development of methodology: Mao Xia and Yangbin Wang. Acquisition of data (provided animals, provided facilities, etc.): Mao Xia, Yangbin Wang and Yongquan Xia. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): Xia M, Yangbin Wang. Writing, review, and/or revision of the manuscript: Mao Xia and Yongquan Xia. Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): Jiawei Zeng, Xia M and Yongquan Xia. Study supervision: Jiawei Zeng. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jiawei Zeng.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Ethics Approval

The protocol of this study was approved by the Research Ethics Committee of the Medical School of Nanjing University. The experiments were carried out in accordance with approved guidelines and regulations.

Consent to Participate

All participants were provided with written informed consent.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, M., Wang, Y., Xia, Y. et al. Forskolin Enhances Antitumor Effect of Oncolytic Measles Virus by Promoting Rab27a Dependent Vesicular Transport System. Curr Microbiol 81, 93 (2024). https://doi.org/10.1007/s00284-024-03613-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03613-z

Navigation