Skip to main content
Log in

Transcription Needs Translation Initiation of the Downstream Gene to Continue Downstream at Intercistronic Junctions in E. Coli

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

We have reported a gal mutant called galE stop0, wherein the galE stop codon was changed to a sense codon. The experiment results demonstrated that preventing galE translation termination inhibited the production of galE 3ʹ ends. This implies that when the galE translation termination was prevented, the galE 3ʹ ends generation was reduced or impaired. We anticipated that the translation of galE would continue to galT, producing a chimeric protein GalE–GalT. This study verified that the chimeric protein was produced, but unexpectedly, we found that the GalT protein was also synthesized in the mutant, and its amount equaled that in the wild-type. In the wild-type, we also found that the GalE–GalT chimeric protein was produced in an amount equal to that of the GalE protein. These results suggest that translation termination of galE and translation initiation of galT occur independently, thus, corroborating our transcription–translation model: At the cistron junction, transcription, decoupled from translation due to the translation termination of galE, needs translation initiation of galT to continue downstream; otherwise, transcription would be terminated by Rho. RNase E-mediated transcript cleavage also produces the 3ʹ ends of pre-galE mRNA. These findings indicated that RNase E produces the 3ʹ end of mRNA and establishes gene expression polarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data Availability

All data are included in the manuscript.

Code Availability

Not applicable.

References

  1. Adhya S (2003) Suboperonic regulatory signals. Sci STKE 2003(185):e22. https://doi.org/10.1126/stke.2003.185.pe22

    Article  Google Scholar 

  2. Wang X, Monford Paul Abishek N, Jeon HJ, Lee Y, He J, Adhya S, Lim HM (2019) Processing generates 3’ ends of RNA masking transcription termination events in prokaryotes. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1813181116

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lee HJ, Jeon HJ, Ji SC, Yun SH, Lim HM (2008) Establishment of an mRNA gradient depends on the promoter: an investigation of polarity in gene expression. J Mol Biol 378(2):318–327. https://doi.org/10.1016/j.jmb.2008.02.067

    Article  PubMed  CAS  Google Scholar 

  4. Ullmann A, Joseph E, Danchin A (1979) Cyclic AMP as a modulator of polarity in polycistronic transcriptional units. Proc Natl Acad Sci USA 76(7):3194–3197. https://doi.org/10.1073/pnas.76.7.3194

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  5. Welply JK, Fowler AV, Beckwith JR, Zabin I (1980) Positions of early nonsense and deletion mutations in lacZ. J Bacteriol 142(2):732–734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Adhya S, Gottesman M (1978) Control of transcription termination. Annu Rev Biochem 47:967–996. https://doi.org/10.1146/annurev.bi.47.070178.004535

    Article  PubMed  CAS  Google Scholar 

  7. Das A, Court D, Adhya S (1976) Isolation and characterization of conditional lethal mutants of Escherichia coli defective in transcription termination factor rho. Proc Natl Acad Sci USA 73(6):1959–1963. https://doi.org/10.1073/pnas.73.6.1959

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  8. De Crombrugghe B, Adhya S, Gottesman M, Pastan I (1973) Effect of Rho on transcription of bacterial operons. Nat New Biol 241(113):260–264

    Article  PubMed  Google Scholar 

  9. Richardson JP, Fink P, Blanchard K, Macy M (1977) Bacteria with defective rho factors suppress the effects of N mutations in bacteriophage lambda. Mol Gen Genet 153(1):81–85. https://doi.org/10.1007/BF01035999

    Article  PubMed  CAS  Google Scholar 

  10. Roberts JW (1969) Termination factor for RNA synthesis. Nature 224(5225):1168–1174. https://doi.org/10.1038/2241168a0

    Article  PubMed  ADS  CAS  Google Scholar 

  11. Wang X, Ji SC, Yun SH, Jeon HJ, Kim SW, Lim HM (2014) Expression of each cistron in the gal operon can be regulated by transcription termination and generation of a galk-specific mRNA, mK2. J Bacteriol 196(14):2598–2606. https://doi.org/10.1128/JB.01577-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Monford Paul Abishek N, Jeon H, Wang X, Lim HM (2023) Reporter gene-based qRT-PCR assay for Rho-247 dependent termination in vivo. Cells. https://doi.org/10.3390/cells12222596

    Article  Google Scholar 

  13. Wang X, Ji SC, Jeon HJ, Lee Y, Lim HM (2015) Two-level inhibition of galK expression by Spot 42: degradation of mRNA mK2 and enhanced transcription termination before the galK gene. Proc Natl Acad Sci USA 112(24):7581–7586. https://doi.org/10.1073/pnas.1424683112

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  14. Jeon HJ, Monford Paul Abishek N, Lee Y, Lim HM (2022) Failure of translation initiation of the next gene decouples transcription at intercistronic sites and the resultant mRNA generation. MBio 13(3):e0128722. https://doi.org/10.1128/mbio.01287-22

    Article  PubMed  CAS  Google Scholar 

  15. Jeon HJ, Lee Y, Monford Paul Abishek N, Wang X, Chattoraj DK, Lim HM (2021) sRNA-mediated regulation of gal mRNA in E. coli: involvement of transcript cleavage by RNase E together with Rho-dependent transcription termination. PLoS Genet 17(10):e1009878. https://doi.org/10.1371/journal.pgen.1009878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sambrook J, Russell DW (2006) Northern hybridization. CSH Protoc. https://doi.org/10.1101/pdb.prot3723

    Article  PubMed  Google Scholar 

  17. Green MR, Sambrook J (2022) Analysis of RNA by Northern blotting. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.top101741

    Article  PubMed  Google Scholar 

  18. Green MR, Sambrook J (2021) Labeling of synthetic oligonucleotides using the Klenow fragment of E. coli DNA polymerase I. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot100693

    Article  PubMed  Google Scholar 

  19. Jeon HJ, Kang C, N MPA, Lee Y, Wang X, Chattoraj DK, Lim HM (2020) Translation initiation control of RNase E-mediated decay of polycistronic gal mRNA. Front Mol Biosci 7:586413. https://doi.org/10.3389/fmolb.2020.586413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Quax TE, Wolf YI, Koehorst JJ, Wurtzel O, van der Oost R, Ran W et al (2013) Differential translation tunes uneven production of operon-encoded proteins. Cell Rep 4(5):938–944. https://doi.org/10.1016/j.celrep.2013.07.049

    Article  PubMed  CAS  Google Scholar 

  21. Burmann BM, Schweimer K, Luo X, Wahl MC, Stitt BL, Gottesman ME, Rosch P (2010) A NusE:NusG complex links transcription and translation. Science 328(5977):501–504. https://doi.org/10.1126/science.1184953

    Article  PubMed  ADS  CAS  Google Scholar 

  22. Chakrabarti SL, Gorini L (1975) A link between streptomycin and rifampicin mutation. Proc Natl Acad Sci USA 72(6):2084–2087. https://doi.org/10.1073/pnas.72.6.2084

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  23. Proshkin S, Rahmouni AR, Mironov A, Nudler E (2010) Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science 328(5977):504–508. https://doi.org/10.1126/science.1184939

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  24. Wang C, Molodtsov V, Firlar E, Kaelber JT, Blaha G, Su M, Ebright RH (2020) Structural basis of transcription-translation coupling. Science 369(6509):1359–1365. https://doi.org/10.1126/science.abb5317

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  25. Washburn RS, Zuber PK, Sun M, Hashem Y, Shen B, Li W et al (2020) Escherichia coli NusG links the lead ribosome with the transcription elongation complex. iScience 23(8):101352. https://doi.org/10.1016/j.isci.2020.101352

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  26. McGary K, Nudler E (2013) RNA polymerase and the ribosome: the close relationship. Curr Opin Microbiol 16(2):112–117. https://doi.org/10.1016/j.mib.2013.01.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhu M, Mori M, Hwa T, Dai X (2019) Disruption of transcription-translation coordination in Escherichia coli leads to premature transcriptional termination. Nat Microbiol 4(12):2347–2356. https://doi.org/10.1038/s41564-019-0543-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ray-Soni A, Bellecourt MJ, Landick R (2016) Mechanisms of bacterial transcription termination: all good things must end. Annu Rev Biochem 85:319–347. https://doi.org/10.1146/annurev-biochem-060815-014844

    Article  PubMed  CAS  Google Scholar 

  29. Richardson JP (2003) Loading Rho to terminate transcription. Cell 114(2):157–159. https://doi.org/10.1016/s0092-8674(03)00554-3

    Article  PubMed  CAS  Google Scholar 

  30. Sullivan SL, Gottesman ME (1992) Requirement for E. coli NusG protein in factor-dependent transcription termination. Cell 68(5):989–994. https://doi.org/10.1016/0092-8674(92)90041-a

    Article  PubMed  CAS  Google Scholar 

  31. Saxena S, Myka KK, Washburn R, Costantino N, Court DL, Gottesman ME (2018) Escherichia coli transcription factor NusG binds to 70S ribosomes. Mol Microbiol 108(5):495–504. https://doi.org/10.1111/mmi.13953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Max E. Gottesman, Columbia University, for critical reading of the manuscript.

Funding

This work was supported by the research fund of Chungnam National University to H.L. This work was also funded by the Basic Science Research Program of the National Research Foundation of Korea (2017R1A5A2015385 and 2020R1A6A3A01099531) to H.J.

Author information

Authors and Affiliations

Authors

Contributions

HJJ, and HML: Conceptualization, data curation, supervision, project administration, and funding acquisition. HJJ, MPAN, and HML: writing—original draft preparation and writing—review and editing. MPAN, YL, and JP: Methodology, validation, formal analysis, investigation, and visualization.

Corresponding authors

Correspondence to Heung Jin Jeon or Heon M. Lim.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, H.J., Monford Paul Abishek, N., Lee, Y. et al. Transcription Needs Translation Initiation of the Downstream Gene to Continue Downstream at Intercistronic Junctions in E. Coli. Curr Microbiol 81, 89 (2024). https://doi.org/10.1007/s00284-023-03592-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03592-7

Navigation