Skip to main content
Log in

Assessment of Antimicrobial and Antioxidant Potential of Oscillatoria sancta and Oscillatoria proteus Isolated from Chilika Lake

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Filamentous cyanobacteria are a promising source of biologically active secondary metabolites with antioxidant, antimicrobial, antiviral and anticancer properties. Previously, cyanobacteria isolated from fresh and marine water were studied extensively, but those isolated from brackish water were less investigated. The purpose of this study was to examine the antimicrobial activities as well as the potential antioxidant capacity of two cyanobacterial strains (Oscillatoria proteus and Oscillatoria sancta) obtained from Chilika Lake. The pigment and antioxidant was assayed using a spectrophotometer; antimicrobial activity was studied by minimum inhibitory concentration (MIC); and the presence of phytoconstituents was detected using gas chromatography mass spectrometry (GC-MS). The solvents used for extraction were methanol, acetone and benzene. The experimental data indicates that the total phenolic and flavonoid content was highest in O. sancta (58.26 ± 0.72 µg/g, 38.45 ± 0.79 µg/g, respectively). Similarly, the methanol extract of O. sancta presented the maximum antioxidant potential in both DPPH (83.18 ± 0.57%) and ABTS (68.42 ± 1.40%) radicals. Besides, more reducing power was also recorded in methanol extract of O. sancta as compared to O. proteus. Further, higher enzymatic activity (superoxide dismutase and catalase) was observed in O. sancta. The antimicrobial potential against bacterial and fungal pathogens demonstrated better activity in O. sancta. In GC-MS analysis seven major chemical classes have been detected. Differential results was found in the two species of Oscillatoria; however, both have potential antimicrobial and antioxidant properties. The findings have pharmaceutical and nutraceutical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data and materials are available with corresponding authors.

Code Availability

Not applicable.

References

  1. Kannaujiya VK, Sundaram S, Sinha RP (2017) Phycobiliproteins: recent developments and future applications. Springer, Singapore

    Book  Google Scholar 

  2. Jena J, Subudhi E (2019) Microalgae: an untapped resource for natural antimicrobials. The role of microalgae in wastewater treatment. Springer, Singapore, pp 99–114

    Chapter  Google Scholar 

  3. Diyana B, Dzhemal M, Plamen S, Detelina B, Rumen M, Ivanka T (2018) Content of phycoerythrin, phycocyanin, alophycocyanin and phycoerythrocyanin in some cyanobacterial strains: applications. Eng Life Sci 18:861–866. https://doi.org/10.1002/elsc.201800035

    Article  CAS  Google Scholar 

  4. Van den Bogaard AE, Stobberingh EE (2000) Epidemiology of resistance to antibiotics: links between animals and humans. Int J Antimicrob Agents 14:327–335. https://doi.org/10.1016/S0924-8579(00)00145-X

    Article  PubMed  Google Scholar 

  5. Claudel M, Schwarte JV, Fromm KM (2020) New antimicrobial strategies based on metal complexes. MDPI 2:849–899. https://doi.org/10.3390/chemistry2040056

    Article  CAS  Google Scholar 

  6. Venugopal V, Prasanna R, Sood A, Kaushik BD (2006) Stimulation of pigment accumulation in Anabaena azollae strains: effect of light intensity and sugars. Folia Microbial (Praha) 51(1):50–56. https://doi.org/10.1007/BF02931450

    Article  CAS  Google Scholar 

  7. Souri E, Amin G, Farsam H, Jalalizadeh H, Barezi S (2008) Screening of thirteen medicinal plant extracts for antioxidant activity. Iran J Pharm Res 7:149–154. https://doi.org/10.22037/ijpr.2010.7587

    Article  Google Scholar 

  8. Kosanic M, Rankovic B, Vukojevic J (2011) Antioxidant properties of some lichen species. J Food Sci Technol 48:584–590. https://doi.org/10.1007/s13197-010-0174-2

    Article  CAS  PubMed  Google Scholar 

  9. Kepekçi RA, Saygideger SD (2012) Enhancement of phenolic compound production in Spirulina platensis by two-step batch mode cultivation. J Appl Phycol 24(4):897–905. https://doi.org/10.1007/s10811-011-9710-3

    Article  CAS  Google Scholar 

  10. Dasgupta CN (2016) Algae as a source of phycocyanin and other industrially important pigments. In: Das D (ed) Algal biorefinery: an integrated approach. Springer, Cham, pp 253–276

    Google Scholar 

  11. Hossain MF, Ratnayake RR, Meerajini K, Wasantha Kumara KL (2016) Antioxidant properties in some selected cyanobacteria isolated from fresh water bodies of Sri Lanka. Food Sci Nutr 4(5):753–758. https://doi.org/10.1002/fsn3.340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anahas AMP, Muralitharan G (2018) Characterization of heterocystous cyanobacterial strains for biodiesel production based on fatty acid content analysis and hydrocarbon production. Energy Convers Manage 157:423–437. https://doi.org/10.1016/j.enconman.2017,12(012),pp.12

    Article  CAS  Google Scholar 

  13. Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR based techniques. Nucleic Acids Res 25:4692–4693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. White TJ, Bruns T, Lee SJWT, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, vol 18(1). Academic Press, pp 315–322

    Google Scholar 

  15. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci 101(30):11030–11035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nei M (1987) Molecular evolutionary genetics. Columbia University Press

    Book  Google Scholar 

  17. Mckinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322. https://doi.org/10.1016/S0021-9258(18)51320-X

    Article  Google Scholar 

  18. Myers J, Kratz W (1955) Relations between pigment content and photosynthetic characteristics in a blue-green alga. J. General Physiol. 39:11–22. https://doi.org/10.1085/jgp.39.1.11

    Article  CAS  Google Scholar 

  19. Siegelman H, Kycia JH (1978) Alga biliproteins. In: Hellebust JA, Craigie JS (eds) Handbook of phycological methods: physiological and biochemical methods. Cambridge University Press, Cambridge, pp 72–78

    Google Scholar 

  20. González-del-Valle LT (2001) Del Cesarismo: a forgotten intertextual antecedent of Tirano Banderas. In: Anales de la literaturaespañolacontemporánea, Vol 26(3). Society of Spanish & Spanish–American Studies, pp. 857–864. https://www.jstor.org/stable/27742092

  21. Machu L, Misurcova L, Vavra Ambrozova J, Orsavova J, Mlcek J, Sochor J, Jurikova T (2015) Phenolic content and antioxidant capacity in algal food products. Molecules 20(1):1118–1133. https://doi.org/10.3390/molecules20011118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McDonald S, Prenzler PD, Antolovich M, Robards K (2001) Phenolic content and antioxidant activity of olive extracts. Food Chem 73(1):73–84. https://doi.org/10.1016/S0308-8146(00)00288-0

    Article  CAS  Google Scholar 

  23. Chang CC, Yang MH, Wen HM, Chern JC (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10(3):178–182

    CAS  Google Scholar 

  24. Ordonez AAL, Gomez JD, Vattuone MA (2006) Antioxidant activities of Sechiumedule (Jacq.) Swartz extracts. Food Chem 97(3):452–458. https://doi.org/10.1016/j.foodchem.2005.05.024

    Article  CAS  Google Scholar 

  25. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cationdecolorization assay. Free Radical Biol Med 26(9–10):1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  CAS  Google Scholar 

  26. Oyaizu M (1986) Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44:307–315. https://doi.org/10.5264/eiyogakuzashi.44.307

    Article  CAS  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1080/14620316.2000.11511297

    Article  CAS  PubMed  Google Scholar 

  28. Das K, Samanta L, Chainy GBN (2000) A modified spectrophotometric assay of superoxide dismutase using nitrite formation by superoxide radicals. Indian J Biochem Biophys 37:201–204

    CAS  Google Scholar 

  29. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  30. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  31. Woodbury W, Spencer AK, Stahmann MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305. https://doi.org/10.1016/0003-2697(71)90375-7

    Article  CAS  PubMed  Google Scholar 

  32. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287. https://doi.org/10.1016/0003-2697(71)90370-8

    Article  CAS  PubMed  Google Scholar 

  33. Ahamed AAP, Rasheed MU, Noorani KPM, Reehana N, Santhoshkumar S, Imran YMM, Alharbi NS, Arunachalam C, Alharbi SA, Akbarsha MA, Thajuddin N (2017) In vitro antibacterial activity of MGDG-palmitoyl from Oscillatoria acuminate NTAPC05 against extended-spectrum β-lactamase producers. J Antibiot 70(6):754–762. https://doi.org/10.1038/ja.2017.40

    Article  CAS  Google Scholar 

  34. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  35. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Article  PubMed  Google Scholar 

  36. Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38(7):3022–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ergul BK (2016) The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 15:71. https://doi.org/10.1186/s12937-016-0186-5

    Article  CAS  Google Scholar 

  38. Babic O, Kovac D, Raseta M, Sibul F, Svircev Z, Simeunovic J (2016) Evaluation of antioxidant activity and phenolic profile of filamentous terrestrial cyanobacterial strains isolated from forest ecosystem. J ApplPhycol 28(4):2333–2342. https://doi.org/10.1007/s10811-015-0773-4

    Article  CAS  Google Scholar 

  39. Rajashekhar Eraiah K, Gomathi Devi L (2013) “Polymorphic phase transformation of Degussa P25 TiO2 by the chelation of diaminopyridine on TiO62−octahedron: correlation of anatase to rutile phase ratio on the photocatalytic activity. J Mol Catal A: Chem 374:12–21. https://doi.org/10.1016/j.molcata.2013.02.009

    Article  CAS  Google Scholar 

  40. Bohm V, Puspitasari-Nienaber NL, Ferruzzi MG, Schwartz SJ (2002) Trolox equivalent antioxidant capacity of different geometrical isomers of α-carotene, β-carotene, lycopene, and zeaxanthin. J Agric Food Chem 50:221–226. https://doi.org/10.1021/jf010888q

    Article  CAS  PubMed  Google Scholar 

  41. Parida S, Dash S, Rath B (2022) In vitro antimicrobial and antioxidant activities of certain brackish water cyanobacteria from Chilika Lake. India Vegetos 35(1):38–50. https://doi.org/10.1007/s42535-021-00290-2

    Article  Google Scholar 

  42. Pumas C, Vacharapiyasophon P, Peerapornpisal Y, Leelapornpisid P, Boonchum W, Ishii M, Khanongnuch C (2011) Thermostablility of phycobiliproteins and antioxidant activity from four thermotolerant cyanobacteria. Phycol Res 59:166–174. https://doi.org/10.1111/j.1440-1835.2011.00615.x

    Article  CAS  Google Scholar 

  43. Shanab SMM, Mostafa SSM, Shalaby EA, Mahmoud GI (2012) Aqueous extracts of microalgae exhibit antioxidant and anticancer activities. Asian Pac J Trop Biomed 2:608–615. https://doi.org/10.1016/S2221-1691(12)60106-3

    Article  PubMed  PubMed Central  Google Scholar 

  44. Elbaz AM, Ibrahim NS, Shehata AM, Mohamed NG, Abdel-Moneim AME (2021) Impact of multi-strain probiotic, citric acid, garlic powder or their combinations on performance, ilealhisto morphometry, microbial enumeration and humoral immunity of broiler chickens. Trop Anim Health Prod 53:1–10. https://doi.org/10.1007/s11250-021-02554-0

    Article  Google Scholar 

  45. Marrez DA, Sultan YY, Naguib MM, Higazy AM (2022) Antimicrobial activity, cytotoxicity and chemical constituents of the freshwater microalga Oscillatoria princeps. Biointerface Res Appl Chem 12(1):961–977

    CAS  Google Scholar 

  46. Dash S, Parida S, Rath B (2019) Antimicrobial activities of some selected marine cyanobacteria isolated from bay of Bengal of Odisha coast. Int J Pharm Biol Sci 9(3):196–200. https://doi.org/10.21276/ijpbs.2019.9.3.27

    Article  CAS  Google Scholar 

  47. Abd El-Aty A, Amin Mohamed A, Samhan F (2014) In vitro antioxidant and antibacterial activities of two fresh water cyanobacterial species, Oscillatoria agardhii and Anabaena sphaerica. J Appl Pharm Sci 4:69–75. https://doi.org/10.7324/JAPS.2014.40712

    Article  Google Scholar 

  48. Patra JK, Patra AP, Mahapatra NK, Thatoi HN, Das S, Sahu RK, Swain GC (2009) Antimicrobial activity of organic solvent extracts of three marine macroalgae from Chilika Lake, Orissa. India. Malaysian J Microbiol 5(2):128–131

    Google Scholar 

  49. Nainangu P, Antonyraj APM, Subramanian K, Kaliyaperumal S, Gopal S, Renuka PS (2020) In vitro screening of antimicrobial, antioxidant, cytotoxic activities, and characterization of bioactive substances from freshwater cyanobacteria Oscillatoria sp SSCM01 and Phormidium sp SSCM02. Biocatal Agric Biotechnol 29:101772. https://doi.org/10.1016/j.bcab.2020.101772

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their heartfelt thanks to Head, Department of Biotechnology, MSCB University, for providing laboratory facility to conduct the experiments.

Funding

No financial support received for the work.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content.

Corresponding author

Correspondence to Biswajit Rath.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest in the present study.

Ethical Approval

Not applicable.

Consent to Participate

Written and verbal informed consent was obtained from all authors.

Consent for Publication

All authors provided consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, S., Dash, S., Sahoo, B. et al. Assessment of Antimicrobial and Antioxidant Potential of Oscillatoria sancta and Oscillatoria proteus Isolated from Chilika Lake. Curr Microbiol 81, 46 (2024). https://doi.org/10.1007/s00284-023-03563-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03563-y

Navigation