Skip to main content
Log in

Typhoid Fever and Non-typhoidal Salmonella Outbreaks: A Portrait of Regional Socioeconomic Inequalities in Brazil

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Typhoid fever occurs in an endemic form in Brazil and is a serious public health problem in some regions. In this scenario, further research is urgently needed to identify the associations between socioeconomic factors and typhoid fever, contributing to guiding policy decisions in the country. We aimed to investigate the influence of socioeconomic disparities on the prevalence of typhoid fever and non-typhoidal Salmonella (NTS) in Brazil. A search for data from 2010 to 2019 was carried out with the national health and human development agencies. As milk and derivatives are the fourth food incriminated in food outbreaks in Brazil, analyses for detecting Salmonella spp. in commercial dairy products allowed us to assess whether the outbreaks associated with these foods are due to inadequacies in sanitary control in dairy establishments or whether they are mainly home-based outbreaks. Predictive models validated by the bootstrapping method demonstrate an association of NTS prevalence reduction with improvements in the Sanitation Service Index (Rv ≥  −8 0.686; p ≤ 0.01) and Municipal Human Development Index – MHDI – (Rv =  −0.789; p ≤ 0.02). In the North, typhoid fever prevalence had seasonal variability with the rainfall, while sanitation services (Rv ≥−0.684; p ≤ 0.04) and MHDI (Rv ≥−0.949; p ≤ 0.003) directly influenced Northeast and South Brazil. Thus, the unequal distribution of investments in the sanitation sector contributed to disparities in typhoid fever prevalence among Brazilian regions. The absence of Salmonella spp. in commercial samples ratified the collected data that the outbreaks of Salmonella spp. in the Brazilian population occur mainly at residences. These findings show that implementing public health education and increasing investments in sanitation in regions with poor service can control outbreaks of Salmonella spp. in Brazilian endemic areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. WHO (2018) Salmonella (non-typhoidal). https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal). Accessed 8 Feb 2023

  2. Popa GL, Papa MI (2021) Salmonella spp. infection – a continuous threat worldwide. Germs 11:88–96. https://doi.org/10.18683/germs.2021.1244

  3. Marchello CS, Birkhold, M, Crump, JA (2022) Complications and mortality of non-typhoidal salmonella invasive disease: a global systematic review and meta-analysis. Lancet Infect Dis 22:692–705. https://doi.org/10.1016/S1473-3099(21)00615-0

    Article  PubMed  PubMed Central  Google Scholar 

  4. Argimón S, Yeats CA, Goater RJ, Abudahab K, Taylor B, Underwood A, Sánchez-Busó L, Wong VK, Dyson ZA, Nair S, Park SE, Marks F, Page AJ, Keane JA, Baker S, Holt KE, Dougan G, Aanensen DM (2021) A global resource for genomic predictions of antimicrobial resistance and surveillance of Salmonella Typhi at pathogenwatch. Nat Commun 12:2879. https://doi.org/10.1038/s41467-021-23091-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Marchello CS, Carr SD, Crump JA (2020) A systematic review on antimicrobial resistance among Salmonella Typhi worldwide. Am J Trop Med Hyg 103:2518–2527. https://doi.org/10.4269/ajtmh.20-0258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. WHO (2016) Typhoid: vaccine preventable diseases surveillance standards. https://www.who.int/publications/m/item/vaccine-preventable-diseases-surveillance-standards-typhoid. Accessed 20 Oct 2023

  7. Contini S (2017) Typhoid intestinal perforation in developing countries: still unavoidable deaths? World J Gastroenterol 23:1925–1931. https://doi.org/10.3748/wjg.v23.i11.1925

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gashaw T, Jambo A, Gashaw T, Jambo A (2022) Typhoid in less developed countries: a major public health concern. In: Hygiene and health in developing countries – recent advances. IntechOpen

  9. Loureiro ECB, Marques NDB, Ramos FLDP, Reis EMFD, Rodrigues DDP, Hofer E (2010) Sorovares de Salmonella de origem humana identificados no Estado do Pará, Brasil, no período de 1991 a 2008. Rev Pan-Amaz Saude 1. https://doi.org/10.5123/S2176-62232010000100014

  10. Quaresma AJPG, Rodrigues YC, Aboim JB, Bezerra MM, Gouveia MIM, Da Costa ARF, de Oliveira SC, Bastos FC, Lima LNGC, de Paula Ramos FL, Valéria Batista Lima K (2022) Molecular epidemiology of sporadic and outbreak-related Salmonella Typhi isolates in the Brazilian north region: a retrospective analysis from 1995 to 2013. Infect Dis Rep 14:569–573. https://doi.org/10.3390/idr14040060

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wilson ME, Chen LH, Han PV, Keystone JS, Cramer JP, Segurado A, Hale D, Jensenius M, Schwartz E, von Sonnenburg F, Leder K, Network GS (2014) Illness in travelers returned from Brazil: the GeoSentinel experience and implications for the 2014 FIFA World Cup and the 2016 Summer Olympics. Clin Infect Dis 58:1347–1356. https://doi.org/10.1093/cid/ciu122

    Article  PubMed  Google Scholar 

  12. Gebeyehu A, Taye M, Abebe R (2022) Isolation, molecular detection and antimicrobial susceptibility profile of Salmonella from raw cow milk collected from dairy farms and households in southern Ethiopia. BMC Microbiol 22:84. https://doi.org/10.1186/s12866-022-02504-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Brasil (2020) Boletim Epidemiológico no 34 Vol 51 Ago 2020. – Ministério da Saúde. https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/d/difteria/publicacoes/boletim-epidemiologico-no-34-vol-51-ago-2020.pdf/view. Accessed 20 Oct 2023

  14. Giaouris E, Simões M, Dubois-Brissonnet F (2020) The role of biofilms in the development and dissemination of microbial resistance within the food industry. Foods 9:816. https://doi.org/10.3390/foods9060816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Brazil (2023) DATASUS – Ministério da Saúde. https://datasus.saude.gov.br/. Accessed 8 Feb 2023

  16. Brazil (2023) Salmonella (Salmonelose). In: Ministério da Saúde. https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/s/salmonella-salmonelose/salmonella-salmonelose. Accessed 8 Feb 2023

  17. SESAB (2023) TabNet Win32 3.0: Casos de Febre Tifóide notificados no SINAN – Bahia. http://www3.saude.ba.gov.br/cgi/tabcgi.exe?sinan/ftifo.def. Accessed 8 Feb 2023

  18. Pizzichini MMM, Patino CM, Ferreira JC (2020) Medidas de frequência: calculando prevalência e incidência na era do COVID-19. J bras pneumol 46. https://doi.org/10.36416/1806-3756/e20200243

  19. SNIS (2023) SNIS – Ministério da Integração e do Desenvolvimento Regional. https://www.gov.br/mdr/pt-br/assuntos/saneamento/snis/. Accessed 8 Feb 2023

  20. Brazil (2023) Atlas of Brazilian Human Development. http://www.atlasbrasil.org.br/consulta. Accessed 8 Feb 2023

  21. IBGE (2021) Brazilian Institute of Geography and Statistics – National Survey on Basic Sanitation. https://www.ibge.gov.br. Accessed 8 Feb 2023

  22. 14:00-17:00 (2002) ISO 6579:2002. In: ISO. https://www.iso.org/standard/29315.html. Accessed 8 Feb 2023

  23. Directive 92/46/EEC (1992) Council Directive 92/46/EEC of 16 June 1992 laying down the health rules for the production and placing on the market of raw milk, heat-treated milk and milk-based products

  24. Brazil (2022) Regulamentos Técnicos de Identidade e Qualidade (RTIQ) – Leite e seus derivados. In: Ministério da Agricultura e Pecuária. https://www.gov.br/agricultura/pt-br/assuntos/suasa/regulamentos-tecnicos-de-identidade-e-qualidade-de-produtos-de-origem-animal-1/rtiq-leite-e-seus-derivados. Accessed 8 Feb 2023

  25. Steyerberg EW, Harrell FE, Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD (2001) Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol 54:774–781. https://doi.org/10.1016/s0895-4356(01)00341-9

    Article  PubMed  CAS  Google Scholar 

  26. Harrell FE, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15:361–387. https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4%3c361::AID-SIM168%3e3.0.CO;2-4

    Article  PubMed  Google Scholar 

  27. AOAC International (2016) Official methods of analysis of AOAC International, 20th Edition. AOAC International, Gaithersburg

  28. WHO (2015) WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007–2015. World Health Organization

  29. Guerrero T, Bayas-Rea R, Erazo E, Zapata Mena S (2022) Nontyphoidal Salmonella in food from Latin America: a systematic review. Foodborne Pathog Dis 19:85–103. https://doi.org/10.1089/fpd.2020.2925

    Article  PubMed  CAS  Google Scholar 

  30. Sodré FF, Locatelli MAF, Jardim WF (2010) Occurrence of emerging contaminants in Brazilian drinking waters: a sewage-to-tap issue. Water Air Soil Pollut 206:57–67. https://doi.org/10.1007/s11270-009-0086-9

    Article  CAS  Google Scholar 

  31. Machado KC, Grassi MT, Vidal C, Pescara IC, Jardim WF, Fernandes AN, Sodré FF, Almeida FV, Santana JS, Canela MC, Nunes CRO, Bichinho KM, Severo FJR (2016) A preliminary nationwide survey of the presence of emerging contaminants in drinking and source waters in Brazil. Sci Total Environ 572:138–146. https://doi.org/10.1016/j.scitotenv.2016.07.210

    Article  PubMed  CAS  Google Scholar 

  32. Johnston PI, Bogue P, Chirambo AC, Mbewe M, Prakash R, Kandoole-Kabwere V, Lester R, Darton T, Baker S, Gordon MA, Meiring JE (2023) Bacterial shedding and serologic responses following an outbreak of Salmonella Typhi in an endemic cohort. BMC Infect Dis 23:416. https://doi.org/10.1186/s12879-023-08385-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. European Commission (2005) Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs

  34. Oliveira NA, Bittencourt GM, Barancelli GV, Kamimura ES, Lee SHI, Oliveira CAF (2019) Listeria monocytogenes in Brazilian foods: occurrence, risks to human health and their prevention. Curr Res Nutr Food Sci J 7:320–330

    Article  Google Scholar 

  35. Guatemim ELX, da Silveira SM, Millezi AF, Ferenz M, Costa KD, Rossi P, Bampi GB (2016) Evaluation of the microbiological quality of ricotta cheese commercialized in Santa Catarina, Brazil. Food Sci Technol 36:612–615. https://doi.org/10.1590/1678-457X.08716

    Article  Google Scholar 

  36. Prates D da F, Würfel SR, Goldbeck JC, Lima AS de, Lopes GV, Silva WP da, Prates D da F, Würfel SR, Goldbeck JC, Lima AS de, Lopes GV, Silva WP da (2017) Microbiological quality and safety assessment in the production of moderate and high humidity cheeses. Ciência Rural 47. https://doi.org/10.1590/0103-8478cr20170363

  37. de Sousa AZB, Abrantes MR, Sakamoto SM, da Silva JBA, de Lima P, O, Lima RN de, Rocha M de OC, Passos YDB, (2014) Physical-chemical and microbiological aspects of the rennet cheese sold in the Northeast States of Brazil. Arq Inst Biol 81:30–35. https://doi.org/10.1590/S1808-16572014000100006

    Article  Google Scholar 

  38. Carrasco E, Morales-Rueda A, García-Gimeno RM (2012) Cross-contamination and recontamination by Salmonella in foods: a review. Food Res Int 45:545–556. https://doi.org/10.1016/j.foodres.2011.11.004

    Article  Google Scholar 

  39. Odipe OE, Raimi M, Deinkuro NS, Funmilayo AA, Edewor O-PE, Habeeb ML, Fadeyibi M (2019) Assessment of environmental sanitation, food safety knowledge, handling practice among food handlers of Bukateria complexes in Iju Town, Akure North of Ondo-State, Nigeria. SSRN J. https://doi.org/10.2139/ssrn.3422457

  40. Lin L, Yang H, Xu X (2022) Effects of water pollution on human health and disease heterogeneity: a review. Front Environ Sci 10:880246

    Article  Google Scholar 

  41. Stürchler D (2023) Infections transmitted via the faecal–oral route: a simple score for a global risk map. J Travel Med taad069. https://doi.org/10.1093/jtm/taad069

  42. Feng Y, Pan H, Zheng B, Li F, Teng L, Jiang Z, Feng M, Zhou X, Peng X, Xu X, Wang H, Wu B, Xiao Y, Baker S, Zhao G, Yue M (2023) An integrated nationwide genomics study reveals transmission modes of typhoid fever in China. mBio 14:e0133323. https://doi.org/10.1128/mbio.01333-23

  43. Carey ME, Dyson ZA, Ingle DJ, Amir A, Aworh MK, Chattaway MA, Chew KL, Crump JA, Feasey NA, Howden BP, Keddy KH, Maes M, Parry CM, Van Puyvelde S, Webb HE, Afolayan AO, Alexander AP, Anandan S, Andrews JR, Ashton PM, Basnyat B, Bavdekar A, Bogoch II, Clemens JD, da Silva KE, De A, de Ligt J, Diaz Guevara PL, Dolecek C, Dutta S, Ehlers MM, Francois Watkins L, Garrett DO, Godbole G, Gordon MA, Greenhill AR, Griffin C, Gupta M, Hendriksen RS, Heyderman RS, Hooda Y, Hormazabal JC, Ikhimiukor OO, Iqbal J, Jacob JJ, Jenkins C, Jinka DR, John J, Kang G, Kanteh A, Kapil A, Karkey A, Kariuki S, Kingsley RA, Koshy RM, Lauer A, Levine MM, Lingegowda RK, Luby SP, Mackenzie GA, Mashe T, Msefula C, Mutreja A, Nagaraj G, Nagaraj S, Nair S, Naseri TK, Nimarota-Brown S, Njamkepo E, Okeke IN, Perumal SPB, Pollard AJ, Pragasam AK, Qadri F, Qamar FN, Rahman SIA, Rambocus SD, Rasko DA, Ray P, Robins-Browne R, Rongsen-Chandola T, Rutanga JP, Saha SK, Saha S, Saigal K, Sajib MSI, Seidman JC, Shakya J, Shamanna V, Shastri J, Shrestha R, Sia S, Sikorski MJ, Singh A, Smith AM, Tagg KA, Tamrakar D, Tanmoy AM, Thomas M, Thomas MS, Thomsen R, Thomson NR, Tupua S, Vaidya K, Valcanis M, Veeraraghavan B, Weill F-X, Wright J, Dougan G, Argimón S, Keane JA, Aanensen DM, Baker S, Holt KE, Global Typhoid Genomics Consortium Group Authorship (2023) Global diversity and antimicrobial resistance of typhoid fever pathogens: Insights from a meta-analysis of 13,000 Salmonella Typhi genomes. eLife 12:e85867. https://doi.org/10.7554/eLife.85867

  44. Walker J, Chaguza C, Grubaugh ND, Carey M, Baker S, Khan K, Bogoch II, Pitzer VE (2023) Assessing the global risk of typhoid outbreaks caused by extensively drug resistant Salmonella Typhi. Nat Commun 14:6502. https://doi.org/10.1038/s41467-023-42353-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Uzzell CB, Abraham D, Rigby J, Troman CM, Nair S, Elviss N, Kathiresan L, Srinivasan R, Balaji V, Zhou NA, Meschke JS, John J, Kang G, Feasey N, Mohan VR, Grassly NC (2023) Environmental surveillance for Salmonella Typhi and its association with typhoid fever incidence in India and Malawi. J Infect Dis jiad427. https://doi.org/10.1093/infdis/jiad427

  46. Gonçalves MF, Blanco CJC, dos Santos VC, dos Oliveira LL, S, Pessoa FCL, (2016) Identification of rainfall homogenous regions taking into account El Niño and La Niña and rainfall decrease in the state of Pará, Brazilian Amazon. Acta Scientiarum Technology 38:209–216. https://doi.org/10.4025/actascitechnol.v38i2.26534

    Article  Google Scholar 

  47. Brito GP, Oliva LMC, Fernandes LH da CL, Basso RL da S, Lima SB de A, Costa TA de M (2020) Febre Tifoide no Brasil: Fatores Determinantes/Typhoid fever in Brazil: determinant factors. Braz J Health Rev 3:12399–12405. https://doi.org/10.34119/bjhrv3n5-084

  48. Peres LC, Saggioro FP, Dias LB, Alves VAF, Brasil RA, de Luiz VED, B, Neder L, Rosman FC, Fleury RN, Ura S, Orsi AT, Talhari C, Ferreira LC de L, Ramos SG, Rey LC, Martinez-Espinosa FE, Sim F, Filho OE de S, Duarte MIS, Lambertucci JR, Chimelli LMC, Rosa PS, Belone A de FF, (2008) Infectious diseases in paediatric pathology: experience from a developing country. Pathology 40:161–175. https://doi.org/10.1080/00313020701816357

    Article  PubMed  Google Scholar 

  49. Gomes CLM (2017) Caracterização epidemiológica dos casos de febre tifoide nas regiões brasileiras, no período de 2012–2016. 1 CD-ROM

  50. Conceição JR, Lopes CPG, Ferreira EI, Epiphanio S, Giarolla J (2022) Neglected tropical diseases and systemic racism especially in Brazil: from socio-economic aspects to the development of new drugs. Acta Trop 235:106654. https://doi.org/10.1016/j.actatropica.2022.106654

    Article  PubMed  Google Scholar 

  51. Moraes CM, de Almeida MM, Dalto VN, Santos MU da SC, Lúcio MJP, Castro PC, Alves LC da S, Leopoldino OCS, Lemos PS, Lemos AAVB, dos Santos LR, Santos CP, Chastinet MP de O, Santos LC (2022) O perfil epidemiológico da febre tifóide no Brasil entre 2011–2021. Braz J Infect Dis 26. https://doi.org/10.1016/j.bjid.2021.102258

  52. Birkhold M, Mwisongo A, Pollard AJ, Neuzil KM (2021) Typhoid conjugate vaccines: advancing the research and public health agendas. J Infect Dis 224:S781–S787. https://doi.org/10.1093/infdis/jiab449

    Article  PubMed  PubMed Central  Google Scholar 

  53. Broertjes J, Jansen R, Verly I, van der Zwaluw K, van Dam A (2023) Typhoid fever due to laboratory-acquired Salmonella Typhi, confirmed by core genome multi-locus sequence typing. Diagn Microbiol Infect Dis 107:116016. https://doi.org/10.1016/j.diagmicrobio.2023.116016

    Article  PubMed  CAS  Google Scholar 

  54. Moura Filho EA (2017) Os imunobiológicos na proteção da saúde: conhecendo sua história. In: Silva MDN, Flauzino RF, Gondim GMDM (eds) Rede de frio: fundamentos para a compreensão do trabalho. Editora FIOCRUZ, Rio de Janeiro, pp 215–238. ISBN: 978-65-5708-091-7. https://doi.org/10.7476/9786557080917.0010

  55. Yang E, Fan L, Yan J, Jiang Y, Doucette C, Fillmore S, Walker B (2018) Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express 8:10. https://doi.org/10.1186/s13568-018-0536-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Younus M, Hartwick E, Siddiqi AA, Wilkins M, Davies HD, Rahbar M, Funk J, Saeed M (2007) The role of neighborhood level socioeconomic characteristics in Salmonella infections in Michigan (1997–2007): assessment using geographic information system. Int J Health Geogr 6:56. https://doi.org/10.1186/1476-072X-6-56

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chang M, Groseclose SL, Zaidi AA, Braden CR (2009) An ecological analysis of sociodemographic factors associated with the incidence of salmonellosis, shigellosis, and E. coli O157:H7 infections in US counties. Epidemiol Infect 137:810–820. https://doi.org/10.1017/S0950268808001477

    Article  PubMed  CAS  Google Scholar 

  58. Newman KL, Leon JS, Rebolledo PA, Scallan E (2015) The impact of socioeconomic status on foodborne illness in high-income countries: a systematic review. Epidemiol Infect 143:2473–2485. https://doi.org/10.1017/S0950268814003847

    Article  PubMed  CAS  Google Scholar 

  59. Antillón M, Warren JL, Crawford FW, Weinberger DM, Kürüm E, Pak GD, Marks F, Pitzer VE (2017) The burden of typhoid fever in low- and middle-income countries: a meta-regression approach. PLoS Negl Trop Dis 11:e0005376. https://doi.org/10.1371/journal.pntd.0005376

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Conselho Nacional deDesenvolvimento Científico eTecnológico (process no.311422/2016-0, 439731/2016-0, 150200/2017-0, and 405728/2018-2,CNPq,Brazil), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (process no. E-26/201.185/2014, E-26/010.001.911/2015, E-26/203.049/2017, and E-26/200.542/2020, E-26/204.254/2021 FAPERJ, Brazil), andCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (process no. 125, CAPES/Embrapa 2014, CAPES, Brazil) for the financial support. Isabelle Silva was supported by CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Pereira Costa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

The authors confirm that the ethical policies of the journal, as noted on the journal’s author guidelines page, have been adhered to. No ethical approval was required as this is a review article with no original research data.’

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 448 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva Viana, I.P., Paulo Vieira, C., Lima Santos Rosario, I. et al. Typhoid Fever and Non-typhoidal Salmonella Outbreaks: A Portrait of Regional Socioeconomic Inequalities in Brazil. Curr Microbiol 81, 57 (2024). https://doi.org/10.1007/s00284-023-03559-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03559-8

Navigation