Skip to main content

Advertisement

Log in

Synergistic Effect of Thymol–Ciprofloxacin Combination on Planktonic Cells and Biofilm of Pseudomonas aeruginosa

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is an opportunistic bacteria causing severe and life-threatening infections in individuals with weakened immune systems. P. aeruginosa forms antibiotic-resistant biofilms, rendering it challenging to treat; hence, alternate therapies are required to eliminate it. Treatment of infections using a combination of drugs is gaining momentum to combat drug-resistant pathogens, including Paeruginosa. This study explores the synergistic effects of Thymol in combination with Ciprofloxacin, Amikacin and Colistin against planktonic cells and biofilm of Paeruginosa. Thymol in combination with Ciprofloxacin yields the fractional inhibitory concentration index values 0.156 and 0.375 in Paeruginosa strains, GC14 and ATCC 9027, respectively, highlighting a robust synergistic effect on both the planktonic and biofilm of Paeruginosa. The results showed that Thymol (512 μg/mL) and Ciprofloxacin (0.125 μg/mL) were the most effective combination with 95 and 93.5% total biofilm inhibition in GC14 and PA27, respectively, compared to the Thymol (512 μg/mL) and Ciprofloxacin (0.125 μg/mL) alone. Our findings suggest that the combinations of Thymol and Ciprofloxacin may be a potential therapeutic strategy to address the issue of infections caused by Paeruginosa biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data Availability

The datasets generated and analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Lyczak JB, Cannon CL, Pier GB (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect Jul 2(9):1051–1060. https://doi.org/10.1016/s1286-4579(00)01259-4

    Article  CAS  Google Scholar 

  2. Olivares E, Badel-Berchoux S, Provot C, Prévost G, Bernardi T, Jehl F (2020) Clinical impact of antibiotics for the treatment of Pseudomonas aeruginosa biofilm infections. Front Microbiol. https://doi.org/10.3389/fmicb.2019.02894

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vetrivel A, Ramasamy M, Vetrivel P, Natchimuthu S, Arunachalam S, Kim GS et al (2021) Pseudomonas aeruginosa biofilm formation and its control. Biologics 3:312–336. https://doi.org/10.3390/biologics1030019

    Article  Google Scholar 

  4. Wenzel RP, Edmond MB (2001) The impact of hospital-acquired bloodstream infections. Emerg Infect Dis 7(2):174–177. https://doi.org/10.3201/eid0702.010203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kosztołowicz T, Metzler R, Wa̡sik S, Arabski M, (2020) Modelling experimentally measured of ciprofloxacin antibiotic diffusion in Pseudomonas aeruginosa biofilm formed in artificial sputum medium. PLoS ONE 15(12):e0243003. https://doi.org/10.1371/journal.pone.0243003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thai T, Salisbury BH, Zito PM (2023) Ciprofloxacin. In: StatPearls. Treasure island (FL): statpearls. http://www.ncbi.nlm.nih.gov/books/NBK535454/

  7. Anderl JN, Franklin MJ, Stewart PS (2000) Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44(7):1818–1824. https://doi.org/10.1128/AAC.44.7.1818-1824.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Walters MC, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47(1):317–323. https://doi.org/10.1128/AAC.47.1.317-323.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu T, Kang J, Liu L (2021) Thymol as a critical component of Thymus vulgaris L. essential oil combats Pseudomonas aeruginosa by intercalating DNA and inactivating biofilm. LWT 136:110354. https://doi.org/10.1016/j.lwt.2020.110354

    Article  CAS  Google Scholar 

  10. Tokam Kuaté CR, Bisso Ndezo B, Dzoyem JP (2021) Synergistic antibiofilm effect of thymol and piperine in combination with aminoglycosides antibiotics against four Salmonella enterica serovars. Evid Based Complement Alternat Med. https://doi.org/10.1155/2021/1567017

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ramirez MS, Tolmasky ME (2017) Amikacin: uses, resistance, and prospects for inhibition. Molecules 22(12):2267. https://doi.org/10.3390/molecules22122267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ristuccia AM, Cunha BA (1985) An overview of amikacin. Ther Drug Monit 7(1):12–25. https://doi.org/10.1097/00007691-198503000-00003

    Article  CAS  PubMed  Google Scholar 

  13. Andrade FF, Silva D, Rodrigues A, Pina-Vaz C (2020) Colistin update on its mechanism of action and resistance, present and future challenges. Microorganisms 8(11):1716. https://doi.org/10.3390/microorganisms8111716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nation RL, Li J (2009) Colistin in the 21st century. Curr Opin Infect Dis 22(6):535–43. https://doi.org/10.1097/QCO.0b013e328332e672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tängdén T (2014) Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria. Ups J Med Sci 119(2):149–153. https://doi.org/10.3109/03009734.2014.899279

    Article  PubMed  PubMed Central  Google Scholar 

  16. Worthington RJ, Melander C (2013) Combination approaches to combat multi-drug resistant bacteria. Trends Biotechnol 31(3):177–184. https://doi.org/10.1016/j.tibtech.2012.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu X, Pan J, Wu Y, Xi X, Ma C, Wang L et al (2017) PSN-PC: A novel antimicrobial and anti-biofilm peptide from the skin secretion of Phyllomedusa camba with cytotoxicity on human lung cancer cell. Molecules 22(11):1896. https://doi.org/10.3390/molecules22111896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stefanović OD (2017) Synergistic activity of antibiotics and bioactive plant extracts: a study against gram-positive and gram-negative bacteria. Bacterial pathogenesis and antibacterial control. Intech open https://www.intechopen.com/chapters/58045https://doi.org/10.5772/intechopen.72026

  19. Mini M, Sreekantan AP, Manikandan AK, Mohanan AG, Khan S, Kumar P (2022) Efflux-mediated ciprofloxacin and cefixime resistance in Pseudomonas aeruginosa. Environ Exp Biol 20(2):113–7. https://doi.org/10.22364/eeb.20.11

    Article  Google Scholar 

  20. Clinical & Laboratory Standards Institute (2023) M07: Dilution AST for aerobically grown bacteria - CLSI. https://clsi.org/standards/products/microbiology/documents/m07/

  21. Schwalbe R, Steele-Moore L, Goodwin AC (2007) Antimicrobial susceptibility testing protocols. Taylor Francis. https://doi.org/10.1201/9781420014495

    Article  Google Scholar 

  22. Petersen PJ, Labthavikul P, Jones CH, Bradford PA (2006) In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time-kill kinetic analysis. J Antimicrob Chemother 57(3):573–576. https://doi.org/10.1093/jac/dki477

    Article  CAS  PubMed  Google Scholar 

  23. Olajuyigbe OO, Afolayan AJ (2015) In vitro synergy and time-kill assessment of interaction between kanamycin and metronidazole against resistant bacteria. Trop J Pharm Res 14(5):837–843. https://doi.org/10.4314/tjpr.v14i5.14

    Article  CAS  Google Scholar 

  24. Mini M, Jayakumar D, Kumar P (2023) In-silico and in-vitro assessment of the antibiofilm potential of azo dye, carmoisine against Pseudomonas aeruginosa. J Biomol Struct. https://doi.org/10.1080/07391102.2023.2237579

    Article  Google Scholar 

  25. Mira P, Yeh P, Hall BG (2022) Estimating microbial population data from optical density. Plos One. https://doi.org/10.1371/journal.pone.0276040

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xu X, Xu L, Yuan G, Wang Y, Qu Y, Zhou M (2018) Synergistic combination of two antimicrobial agents closing each other’s mutant selection windows to prevent antimicrobial resistance. Sci Rep. https://doi.org/10.1038/s41598-018-25714-z

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lambert RJ, Skandamis PN, Coote PJ, Nychas GJ (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil. Thymol and carvacrol. J Appl Microbiol 91(3):453–62. https://doi.org/10.1046/j.1365-2672.2001.01428.x

    Article  CAS  PubMed  Google Scholar 

  28. Baek MS, Chung ES, Jung DS, Ko KS (2020) Effect of colistin-based antibiotic combinations on the eradication of persister cells in Pseudomonas aeruginosa. J Antimicrob Chemother 75(4):917–24. https://doi.org/10.1093/jac/dkz552

    Article  CAS  PubMed  Google Scholar 

  29. Shariati A, Arshadi M, Khosrojerdi MA, Abedinzadeh M, Ganjalishahi M, Maleki A et al (2022) The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Front Public Health 10:1025633. https://doi.org/10.3389/fpubh.2022.1025633

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xu J, Zhou F, Ji BP, Pei RS, Xu N (2008) The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett Appl Microbiol 47(3):174–179. https://doi.org/10.1111/j.1472-765X.2008.02407

    Article  CAS  PubMed  Google Scholar 

  31. Liu Q, Niu H, Zhang W, Mu H, Sun C, Duan J (2015) Synergy among Thymol, eugenol, berberine, cinnamaldehyde and streptomycin against planktonic and biofilm-associated food-borne pathogens. Lett Appl Microbiol 60(5):421–430. https://doi.org/10.1111/lam.12401

    Article  CAS  PubMed  Google Scholar 

  32. de Castro RD, de Souza TMPA, Bezerra LMD, Ferreira GLS, de Brito Costa EMM, Cavalcanti AL (2015) Antifungal activity and mode of action of Thymol and its synergism with nystatin against Candida species involved with infections in the oral cavity: an in vitro study. BMC Complement Altern Med 15:417. https://doi.org/10.1186/s12906-015-0947-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Madhusoodhanan A, Minsa M, Mohanan A, Kumar P (2022) Bacterial biofilm eradication and combating strategies. Asia Pac J Mol Biol Biotechnol 11:22–36. https://doi.org/10.35118/apjmbb.2022.030.1.03

    Article  Google Scholar 

  34. El Abed S, Saad I, Latrache H, Ghizlane Z, Hind M, Remmal A (2011) Carvacrol and Thymol components inhibiting Pseudomonas aeruginosa adherence and biofilm formation. Afr J Microbiol Res 5:3229–3232. https://doi.org/10.5897/AJMR11.275

    Article  Google Scholar 

  35. Gupta P, Chhibber S, Harjai K (2016) Subinhibitory concentration of ciprofloxacin targets quorum sensing system of Pseudomonas aeruginosa causing inhibition of biofilm formation & reduction of virulence. Indian J Med Res 143(5):643–651. https://doi.org/10.4103/0971-5916.187114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ayaz M, Ullah F, Sadiq A, Ullah F, Ovais M, Ahmed J et al (2019) Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem Biol Interact 308:294–303. https://doi.org/10.1016/j.cbi.2019.05.050

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research funding under the Performance Linked Encouragement for Academic Studies and Endeavour (PLEASE) scheme, Kerala Government, and Consolidation of University Research for Innovation and Excellence in Women Universities (CURIE), DST, New Delhi, is duly acknowledged. The University Grant Commission Junior Research Fellowships, awarded to Devi Jayakumar, Minsa Mini and Parvathi Vaikkathillam, are duly acknowledged.

Funding

This research was supported by Research funding under the Performance Linked Encouragement for Academic Studies and Endeavour (PLEASE) scheme, Kerala Government, and Consolidation of University Research for Innovation and Excellence in Women Universities (CURIE), DST, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest that could potentially influence the results and interpretations in this manuscript.

Ethical Approval

Ethical approval was granted by the institutional Ethics Committee as per order B6/ 2012/ 2021/ GCWT, dated 21/03/2022.

Consent for Publication

All authors listed in this manuscript provide their consent for publication of the research article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayakumar, D., Mini, M., Kumar, P. et al. Synergistic Effect of Thymol–Ciprofloxacin Combination on Planktonic Cells and Biofilm of Pseudomonas aeruginosa. Curr Microbiol 81, 23 (2024). https://doi.org/10.1007/s00284-023-03546-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03546-z

Navigation