Skip to main content
Log in

Obtainment and Inoculation of Acinetobacter pittii Strain JJ-2, and Combined Action with Plants for Formaldehyde and CO2 Removal: A Research Study

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A formaldehyde-degrading bacterium JJ-2 was isolated from the rhizosphere of Chlorophytum and identified as Acinetobacter pittii by colony morphology and 16S rDNA sequence analysis. Further studies showed that under optimal conditions, JJ-2 could maintain activity for six cycles at an initial formaldehyde concentration of 450 mg L−1. At the same time, the complete degradation time was shortened from 12 to 6 h. When the JJ-2 strain was inoculated into sterile soil, the surface spray method had the best effect, and the removal efficiency of 5 ppm formaldehyde increased by 22.63%. In an actual potted plants system colonized with strain JJ-2, the first and second fumigations (without re-inoculation) increased removal by 1.36 times and 0.92 times during the day and 1.27 times and 2.07 times at night. In addition, in the second fumigation, the plant-bacteria combined system was 693.63 ppm and the plant system was 715.34 ppm, effectively reducing the CO2 concentration. This study provides an economical, ecological, and efficient approach to improve the combined system of plants and bacteria to remove gaseous formaldehyde from indoor air, with a positive impact on carbon neutrality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Goldemberg J, Martinez-Gomez J, Sagar A et al (2018) Household air pollution, health, and climate change: cleaning the air. Environ Res Lett 13(3):030201. https://doi.org/10.1088/1748-9326/aaa49d

    Article  Google Scholar 

  2. Kang X, Jin D, Jiang L et al (2022) Efficacy and mechanisms of traditional Chinese medicine for COVID-19: a systematic review. Chin Med 17(1):30. https://doi.org/10.1186/s13020-022-00587-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kim KJ, Ahn HG (2012) The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating. Micropor Mesopor Mat 152:78–83. https://doi.org/10.1016/j.micromeso.2011.11.051

    Article  CAS  Google Scholar 

  4. Huang Y, Ho SSH, Lu Y et al (2016) Removal of indoor volatile organic compounds via photocatalytic oxidation: a short review and prospect. Molecules 21(1):56. https://doi.org/10.3390/molecules21010056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li Y, Jiang Y, Peng S, Jiang F (2010) Nitrogen-doped TiO2 modified with NH4F for efficient photocatalytic degradation of formaldehyde under blue light-emitting diodes. J Hazard Mater 182(1):90–96. https://doi.org/10.1016/j.jhazmat.2010.06.002

    Article  CAS  PubMed  Google Scholar 

  6. Shao Y, Wang Y, Zhao R et al (2020) Biotechnology progress for removal of indoor gaseous formaldehyde. Appl Microbiol Biotechnol 104(9):3715–3727. https://doi.org/10.1007/s00253-020-10514-1

    Article  CAS  PubMed  Google Scholar 

  7. Teiri H, Pourzamani H, Hajizadeh Y (2018) Phytoremediation of VOCs from indoor air by ornamental potted plants: a pilot study using a palm species under the controlled environment. Chemosphere 197:375–381. https://doi.org/10.1016/j.chemosphere.2018.01.078

    Article  CAS  PubMed  Google Scholar 

  8. Liu L, Liu J, Zeng Y et al (2019) Formaldehyde adsorption in carbon nanopores—new insights from molecular simulation. Chem Eng J 370:866–874. https://doi.org/10.1016/j.cej.2019.03.262

    Article  CAS  Google Scholar 

  9. Su Y, Liang Y (2015) Foliar uptake and translocation of formaldehyde with Bracket plants (Chlorophytum comosum). J Hazard Mater 291:120–128. https://doi.org/10.1016/j.jhazmat.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  10. Li J, Zhong J, Zhan T et al (2019) Indoor formaldehyde removal by three species of Chlorphytum comosum under the long-term dynamic fumigation system. Environ Sci Pollut R 26(36):36857–36868. https://doi.org/10.1007/s11356-019-06701-x

    Article  CAS  Google Scholar 

  11. Teiri H, Hajizadeh Y, Azhdarpoor A (2022) A review of different phytoremediation methods and critical factors for purification of common indoor air pollutants: an approach with sensitive analysis. Air Qual Atmos Health 15:373–439. https://doi.org/10.1007/s11869-021-01118-3

    Article  CAS  Google Scholar 

  12. Good N, Carpenter T, Anderson GB et al (2019) Development and validation of models to predict personal ventilation rate for air pollution research. J Expo Sci Environ Epidemiol 29(4):568–577. https://doi.org/10.1038/s41370-018-0067-4

    Article  CAS  PubMed  Google Scholar 

  13. Shao Y, Wang Y, Yi F et al (2019) Gaseous formaldehyde degrading by Methylobacterium sp. XJLW Appl Biochem Biotechnol 189(1):262–272. https://doi.org/10.1007/s12010-019-03001-5

    Article  CAS  PubMed  Google Scholar 

  14. Zhao H, Geng Y, Fan J et al (2013) Isolation and identification of Paracoccus sp. FD3 and evaluation of its formaldehyde degradation kinetics. Biotechnol Bioprocess Eng 18(2):300–305. https://doi.org/10.1007/s12257-012-0449-8

    Article  CAS  Google Scholar 

  15. Vergara-Fernández A, Yánez D, Morales P et al (2018) Biofiltration of benzo[α]pyrene, toluene and formaldehyde in air by a consortium of Rhodococcus erythropolis and Fusarium solani: effect of inlet loads, gas flow and temperature. Chem Eng J 332:702–710. https://doi.org/10.1016/j.cej.2017.09.095

    Article  CAS  Google Scholar 

  16. Wakayama K, Yamaguchi S, Takeuchi A et al (2016) Regulation of intracellular formaldehyde toxicity during methanol metabolism of the methylotrophic yeast Pichia methanolica. J Biosci Bioeng 122(5):545–549. https://doi.org/10.1016/j.jbiosc.2016.03.022

    Article  CAS  PubMed  Google Scholar 

  17. Kuiper I, Lagendijk EL, Bloemberg GV et al (2004) Rhizoremediation: a beneficial plant-microbe interaction. MPMI 17(1):6–15. https://doi.org/10.1094/MPMI.2004.17.1.6

    Article  CAS  PubMed  Google Scholar 

  18. Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321(1):385–408. https://doi.org/10.1007/s11104-008-9686-1

    Article  CAS  Google Scholar 

  19. Oyabu T, Sawada A, Onodera T et al (2003) Characteristics of potted plants for removing offensive odors. Sens Actuators B Chem 89:131–136. https://doi.org/10.1016/S0925-4005(02)00454-9

    Article  CAS  Google Scholar 

  20. Kukkar D, Vellingiri K, Kaur R et al (2019) Nanomaterials for sensing of formaldehyde in air: principles, applications, and performance evaluation. Nano Res 12:225–246. https://doi.org/10.1007/s12274-018-2207-5

    Article  CAS  Google Scholar 

  21. Kim KJ, Kil MJ, Song JS et al (2008) Efficiency of volatile formaldehyde removal by indoor plants: contribution of aerial plant parts versus the root zone. J Am Soc Hortic Sci 133:521–526. https://doi.org/10.21273/JASHS.133.4.521

    Article  Google Scholar 

  22. Philippot L, Raaijmakers JM, Lemanceau P et al (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799. https://doi.org/10.1038/nrmicro3109

    Article  CAS  PubMed  Google Scholar 

  23. Liang L, Zhigang Z, Xiaoli H et al (2016) Isolation, identification, and optimization of culture conditions of a bioflocculant-producing bacterium Bacillus megaterium SP1 and its application in aquaculture wastewater treatment. BioMed Res Int 2016:2758168. https://doi.org/10.1155/2016/2758168

    Article  CAS  Google Scholar 

  24. Acbd M, Higashi EN, Goncalves AN et al (2000) A novel approach for the definition of the inorganic medium components formicropropagation of yellow passionfruit (Passiflora edulis sims. F. Flavicarpa Deg.). In Vitro Cell Dev Biol 36:527–531. https://doi.org/10.1007/s11627-000-0094-3

    Article  Google Scholar 

  25. Kashi AM, Tahermanesh K, Chaichian S et al (2014) How to prepare biological samples and live tissues for scanning electron microscopy (SEM). GMJ 3(2):63–80. https://doi.org/10.31661/gmj.v3i2.267

    Article  Google Scholar 

  26. Li J, Zhong J, Liu Q et al (2021) Indoor formaldehyde removal by three species of Chlorophytum comosum under dynamic fumigation system: part 2—plant recovery. Environ Sci Pollut R 28(7):8453–8465. https://doi.org/10.1007/s11356-020-11167-3

    Article  CAS  Google Scholar 

  27. Fumasoli A, Bürgmann H, Weissbrodt DG et al (2017) Growth of nitrosococcus-related ammonia oxidizing bacteria coincides with extremely low pH values in wastewater with high ammonia content. Environ Sci Technol 51:6857–6866. https://doi.org/10.1021/acs.est.7b00392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhumakayev AR, Vörös M, Szekeres A et al (2021) Comprehensive characterization of stress tolerant bacteria with plant growth-promoting potential isolated from glyphosate-treated environment. World J Pediatr 37:94. https://doi.org/10.1007/s11274-021-03065-8

    Article  CAS  Google Scholar 

  29. Toma MK, Ruklisha MP, Vanags JJ et al (1991) Inhibition of microbial growth and metabolism by excess turbulence. Biotechnol Bioeng 38:552–556. https://doi.org/10.1002/bit.260380514

    Article  CAS  PubMed  Google Scholar 

  30. Garcia-Ochoa F, Gomez E, Santos VE et al (2010) Oxygen uptake rate in microbial processes: an overview. Biochem Eng J 49(3):289–307. https://doi.org/10.1016/j.bej.2010.01.011

    Article  CAS  Google Scholar 

  31. Tolosa L, Kostov Y, Harms P et al (2002) Non-invasive measurement of dissolved oxygen in shake flasks. Biotechnol Bioeng 80(5):594–597. https://doi.org/10.1002/bit.10409

    Article  CAS  PubMed  Google Scholar 

  32. Brandt KK, Sjøholm OR, Krogh KA et al (2009) Increased pollution-induced bacterial community tolerance to sulfadiazine in soil hotspots amended with artificial root exudates. Environ Sci Technol 43(8):2963–2968. https://doi.org/10.1021/es803546y

    Article  CAS  PubMed  Google Scholar 

  33. Bertels F, Gallie J, Rainey PB (2017) Identification and characterization of domesticated bacterial transposases. Genome Biol Evol 9(8):2110–2121. https://doi.org/10.1093/gbe/evx146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mirdamadi S, Rajabi A, Khalilzadeh P et al (2005) Isolation of bacteria able to metabolize high concentrations of formaldehyde. World J Microbiol Biotechnol 21(6):1299–1301. https://doi.org/10.1007/s11274-005-2443-1

    Article  CAS  Google Scholar 

  35. Pereira NS, Zaiat M (2009) Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR). J Hazard Mater 163(2):777–782. https://doi.org/10.1016/j.jhazmat.2008.07.028

    Article  CAS  PubMed  Google Scholar 

  36. Tateishi T, Horikoshi T, Tsubota H et al (1989) Application of the chloroform fumigation-incubation method to the estimation of soil microbial biomass in burned and unburned Japanese red pine forests. Fems Microbiol Lett 5(3):163–171. https://doi.org/10.1016/0378-1097(89)90109-2

    Article  Google Scholar 

  37. Bamisile BS, Dash CK, Akutse KS et al (2018) Prospects of endophytic fungal entomopathogens as biocontrol and plant growth promoting agents: an insight on how artificial inoculation methods affect endophytic colonization of host plants. Microbiol Res 217:34–50. https://doi.org/10.1016/j.micres.2018.08.016

    Article  PubMed  Google Scholar 

  38. Anyasi RO, Atagana HI, Sutherland R (2019) Comparative study of the colonization of chromolaena and tobacco plants by Bacteria safensis CS4 using different methods of inoculation. PJBS 22(7):309–317. https://doi.org/10.3923/pjbs.2019.309.317

    Article  CAS  PubMed  Google Scholar 

  39. Panyametheekul S, Rattanapun T, Morris J et al (2019) Foliage houseplant responses to low formaldehyde levels. Build Environ 147:67–76. https://doi.org/10.1016/j.buildenv.2018.09.053

    Article  Google Scholar 

  40. Vancura V, Hovadik A (1965) Root exudates of plants II. Composition of root exudates of some vegetables. Plant Soil 22:21–32. https://doi.org/10.1007/BF01377686

    Article  CAS  Google Scholar 

  41. Franzetti A, Gandolfi I, Bestetti G et al (2020) Plant-microorganisms interaction promotes removal of air pollutants in Milan (Italy) urban area. J Hazard Mater 384:121021. https://doi.org/10.1016/j.jhazmat.2019.121021

    Article  CAS  PubMed  Google Scholar 

  42. Khalifa AA, Khan E, Akhtar MS (2023) Phytoremediation of indoor formaldehyde by plants and plant material. Int J Phytoremediat 25(4):493–504. https://doi.org/10.1080/15226514.2022.2090499

    Article  Google Scholar 

Download references

Acknowledgements

The authors also wish to thank the partial financial support by the National Natural Science Foundation of China (Grants 21467018), China Scholarship Council (CSC No.201408360050) and Foundation of Jiangxi Education Committee (GJJ170576).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SC, TZ, YJ, HL, and SL. The first draft of the manuscript was written by JZ, and JL revised it critically for important intellectual content and approved the version to be published. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Jian Li.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

284_2023_3536_MOESM1_ESM.doc

Supplementary file1 (DOC 201 kb) Appendix A. Supplementary material(S1) (There was significant difference for data in figure (p < 0.05))

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Chen, S., Lin, S. et al. Obtainment and Inoculation of Acinetobacter pittii Strain JJ-2, and Combined Action with Plants for Formaldehyde and CO2 Removal: A Research Study. Curr Microbiol 81, 31 (2024). https://doi.org/10.1007/s00284-023-03536-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03536-1

Navigation