Skip to main content
Log in

Prospective Phycocompounds for Developing Therapeutics for Urinary Tract Infection

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Antibiotic resistance of bacteria is causing clinical and public health concerns that are challenging to treat. Infections are becoming more common in the present era, and patients admitted to hospitals often have drug-resistant bacteria that can spread nosocomial infections. Urinary tract infections (UTIs) are among the most common infectious diseases affecting all age groups. There has been an increase in the proportion of bacteria that are resistant to multiple drugs. Herein is a comprehensive update on UTI-associated diseases: cystitis, urethritis, acute urethral syndrome, pyelonephritis, and recurrent UTIs. Further emphasis on the global statistical incidence and recent advancement of the role of natural products in treating notorious infections are described. This updated compendium will inspire the development of novel phycocompounds as the prospective antibacterial candidate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data and Material Availability

All data generated or analyzed during this study are included in this published article.

Code Availability

Not applicable.

References

  1. Catalano A, Iacopetta D, Ceramella J et al (2022) Multidrug resistance (MDR): a widespread phenomenon in pharmacological therapies. Molecules 27:616. https://doi.org/10.3390/molecules27030616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. El-Shouny WA, Gaafar RM, Ismail GA et al (2017) Antibacterial activity of some seaweed extracts against multidrug resistant urinary tract bacteria and analysis of their virulence genes. Int J Curr Microbiol Appl Sci 6:2569–2586. https://doi.org/10.20546/ijcmas.2017.611.302

    Article  CAS  Google Scholar 

  3. Colborn KL, Bronsert M, Hammermeister K et al (2019) Identification of urinary tract infections using electronic health record data. Am J Infect Control 47:371–375. https://doi.org/10.1016/j.ajic.2018.10.009

    Article  PubMed  Google Scholar 

  4. Timsit JF, Ruppé E, Barbier F et al (2020) Bloodstream infections in critically ill patients: an expert statement. Intensive Care Med 46:266–284. https://doi.org/10.1007/s00134-020-05950-6

    Article  PubMed  PubMed Central  Google Scholar 

  5. Walker AC, Bhargava R, Vaziriyan-Sani AS et al (2021) Colonization of the Caenorhabditis elegans gut with human enteric bacterial pathogens leads to proteostasis disruption that is rescued by butyrate. PloS Pathog 17:e1009510. https://doi.org/10.1371/journal.ppat.1009510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nguyen SN, Le Thi HT, Tran TD et al (2022) Clinical epidemiology characteristics and antibiotic resistance associated with urinary tract infections caused by E. coli. Int J Nephrol 2022:1–5. https://doi.org/10.1155/2022/2552990

    Article  CAS  Google Scholar 

  7. Najmi A, Javed SA, Al Bratty M et al (2022) Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules 27:349. https://doi.org/10.3390/molecules27020349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Church NA, McKillip JL (2021) Antibiotic resistance crisis: challenges and imperatives. Biologia 76:1535–1550. https://doi.org/10.1007/s11756-021-00697-x

    Article  CAS  Google Scholar 

  9. Wagenlehner FM, Bjerklund Johansen TE, Cai T et al (2020) Epidemiology, definition and treatment of complicated urinary tract infections. Nat Rev Urol 17:586–600. https://doi.org/10.1038/s41585-020-0362-4

    Article  PubMed  Google Scholar 

  10. Chakrabarty S, Mishra MP, Bhattacharyay D (2022) Targeting microbial bio-film: an update on MDR gram-negative bio-film producers causing catheter-associated urinary tract infections. Appl Biochem Biotechnol 5:1–35. https://doi.org/10.1007/s12010-021-03711-9

    Article  CAS  Google Scholar 

  11. Klein RD, Hultgren SJ (2020) Urinary tract infections: microbial pathogenesis, host–pathogen interactions and new treatment strategies. Nat Rev Microbiol 18:211–226. https://doi.org/10.1038/s41579-020-0324-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vanneste BG, Van Limbergen EJ, Marcelissen TA et al (2022) Development of a management algorithm for acute and chronic radiation urethritis and cystitis. Urol Int 106:63–74. https://doi.org/10.1159/000515716

    Article  PubMed  Google Scholar 

  13. Bishoyi AK, Sahoo CR, Padhy RN (2022) Recent progression of cyanobacteria and their pharmaceutical utility: an update. J Biomol Struct Dyn 6:1–34. https://doi.org/10.1080/07391102.2022.2062051

    Article  CAS  Google Scholar 

  14. Balasubramaniam V, Gunasegavan RD, Mustar S, Lee JC, Mohd Noh MF (2021) Isolation of industrial important bioactive compounds from microalgae. Molecules 26:943. https://doi.org/10.3390/molecules26040943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karki S, Shrestha K, Gautam R, Narayan R (2020) Phytochemical screening, FT-IR and GC-MS analysis of Euphorbia hirta. J Pharmacogn Phytochem 9:1883–1889

    CAS  Google Scholar 

  16. Pradhan J, Das S, Das BK (2014) Antibacterial activity of freshwater microalgae: a review. Afr J Pharmacy Pharmacol 8:809–818. https://doi.org/10.5897/AJPP2013.0002

    Article  CAS  Google Scholar 

  17. Rojas V, Rivas L, Cárdenas C et al (2020) Cyanobacteria and eukaryotic microalgae as emerging sources of antibacterial peptides. Molecules 25:5804. https://doi.org/10.3390/molecules25245804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Demiriz T, Cokmus C, Pabuccu K (2011) Antimicrobial activity of some algal species belonging to cyanobacteria and chlorophyta. Asian J Chem 23:1384–1386

    CAS  Google Scholar 

  19. Singh U, Singh P, Singh AK et al (2021) Identification of antifungal and antibacterial biomolecules from a cyanobacterium. Arthrospira platensis Algal Res 54:102215. https://doi.org/10.1016/j.algal.2021.102215

    Article  Google Scholar 

  20. Chowdhury MM, Kubra K, Hossain MB et al (2015) Screening of antibacterial and antifungal activity of freshwater and marine algae as a prominent natural antibiotic available in Bangladesh. Int J Pharmacol 11:828–833. https://doi.org/10.3923/ijp.2015.828.833

    Article  CAS  Google Scholar 

  21. Azeez R (2014) Growth and biochemical parameters of selective cultured cyanobacteria and exploiting antibacterial potency against human bacterial pathogens. Appl Bot 72:25537–25543

    Google Scholar 

  22. Rao D (2015) Antibacterial activity of fresh water Cyanobacteria. J Algal Biomass Util 6:60–64

    Google Scholar 

  23. Nainangu P, Antonyraj AP, Subramanian K et al (2020) In vitro screening of antimicrobial, antioxidant, cytotoxic activities, and characterization of bioactive substances from freshwater cyanobacteria Oscillatoria sp. SSCM01 and Phormidium sp. SSCM02. Biocatal Agric Biotechnol 29:101772. https://doi.org/10.1016/j.bcab.2020.101772

    Article  Google Scholar 

  24. Prakash JW, Marimuthu J, Jeeva S (2011) Antimicrobial activity of certain fresh water microalgae from Thamirabarani River, Tamil Nadu, South India. Asian Pac J Trop Biomed 1:S170-173. https://doi.org/10.1016/S2221-1691(11)60149-4

    Article  Google Scholar 

  25. Hamdy AD (2018) Determination of the effect of some biological products of Synechocystis pevalekii on some pathogenic bacteria isolated from wounds and urinary tract. Tikrit J Pure Sci 23:9–17. https://doi.org/10.25130/tjps.23.2018.022

    Article  Google Scholar 

  26. Skočibušić M, Lacić S, Rašić Z (2019) Evaluation of antimicrobial potential of the marine Cyanobacterium, Rivularia mesenterica. J Adv Microbiol 16:1–1. https://doi.org/10.9734/JAMB/2019/v16i430128

    Article  Google Scholar 

  27. Tyagi R, Kaushik BD, Kumar J (2014) Antimicrobial activity of some cyanobacteria. In Microbial diversity and biotechnology in food security. 463–470. https://doi.org/10.1007/978-81-322-1801-2_41

  28. Yi Z, Yin-Shan C, Hai-Sheng LU (2001) Screening for antibacterial and antifungal activities in some marine algae from the Fujian coast of China with three different solvents. Chin J Oceanol Limnol 19:327–331. https://doi.org/10.1007/BF02850736

    Article  Google Scholar 

  29. Thamilvanan D, Karthikeyan D, Muthukumaran M et al (2016) Antibacterial activity of selected microalgal members of Chlorophyceae. World J Pharm Pharm Sci 5:718–729

    CAS  Google Scholar 

  30. Shaima AF, Yasin NH, Ibrahim N et al (2022) Unveiling antimicrobial activity of microalgae Chlorella sorokiniana (UKM2), Chlorella sp. (UKM8) and Scenedesmus sp. (UKM9). Saudi J Biol Sci 29:1043–1052. https://doi.org/10.1016/j.sjbs.2021.09.069

    Article  CAS  PubMed  Google Scholar 

  31. Ghalem BR, Zouaoui B (2018) Antibacterial activity of diethyl ether and chloroform extracts of seaweeds against Escherichia coli and Staphylococcus aureus. Int. J Avian Wildl 3:310–313. https://doi.org/10.15406/ijawb.2018.03.00111

    Article  Google Scholar 

  32. El Zawawy N, El Shafay S, Abomohra AE (2020) Macroalgal activity against fungal urinary tract infections: in vitro screening and evaluation study. Rend Lincei Sci Fis Nat 31:165–175. https://doi.org/10.1007/s12210-019-00856-y

    Article  Google Scholar 

  33. Christabell J, Lipton AP, Aishwarya MS et al (2011) Antibacterial activity of aqueous extract from selected macroalgae of southwest coast of India. Sea Res Util 33:67–75

    Google Scholar 

  34. Manikandan S, Ganesapandian S, Singh M et al (2011) Antimicrobial activity of seaweeds against multi drug resistant strains. Int J Pharm 7:522–526. https://doi.org/10.3923/ijp.2011.522.526

    Article  Google Scholar 

  35. Moubayed NM, Al Houri HJ, Al Khulaifi MM et al (2017) Antimicrobial, antioxidant properties and chemical composition of seaweeds collected from Saudi Arabia (Red Sea and Arabian Gulf). Saudi J Biol Sci 24:162–169. https://doi.org/10.1016/j.sjbs.2016.05.018

    Article  CAS  PubMed  Google Scholar 

  36. Selvaraj P, Neethu E, Rathika P et al (2020) Antibacterial potentials of methanolic extract and silver nanoparticles from marine algae. Biocatal Agric Biotechnol 28:101719. https://doi.org/10.1016/j.bcab.2020.101719

    Article  Google Scholar 

  37. Rajivgandhi G, Ramachandran G, Maruthupandy M et al (2018) Antibacterial effect of endophytic actinomycetes from marine algae against multi drug resistant gram-negative bacteria. Exam Mar Biol Oceanogr 1:1–8. https://doi.org/10.31031/EIMBO.2018.01.000522

    Article  Google Scholar 

  38. El-deen N (2011) Screening for antibacterial activities in some marine algae from the red sea (Hurghada, Egypt). Afr J Microbiol Res 5:2160–2167. https://doi.org/10.5897/AJMR11.390

    Article  Google Scholar 

  39. Al-Judaibi A (2014) Antibacterial effects of extracts of two types of Red Sea Algae. J Biosci Med 2:74. https://doi.org/10.4236/jbm.2014.22012

    Article  CAS  Google Scholar 

  40. Navarro F, Forján E, Vázquez M et al (2017) Antimicrobial activity of the acidophilic eukaryotic microalga Coccomyxa onubensis. Phycol Res 65:38–43. https://doi.org/10.1111/pre.12158

    Article  CAS  Google Scholar 

  41. Challouf R, Dhieb RB, Omrane H et al (2012) Antibacterial, antioxidant and cytotoxic activities of extracts from the thermophilic green alga, Cosmarium sp. Afr J Biotechnol 11:14844–14849. https://doi.org/10.5897/AJB12.1118

    Article  CAS  Google Scholar 

  42. Kilic NK, Erdem K, Donmez G (2019) Bioactive compounds produced by Dunaliella species, antimicrobial effects and optimization of the efficiency. Turkish J Fish Aquat Sci 19:923–933. https://doi.org/10.4194/1303-2712-v19_11_04

    Article  Google Scholar 

  43. Kavita K, Singh VK, Jha B (2014) 24-Branched Δ5 sterols from Laurencia papillosa red seaweed with antibacterial activity against human pathogenic bacteria. Microbiol Res 169:301–306. https://doi.org/10.1016/j.micres.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  44. Vairappan CS (2003) Potent antibacterial activity of halogenated metabolites from Malaysian red algae, Laurencia majuscula (Rhodomelaceae, Ceramiales). Biomol Eng 20:255–259. https://doi.org/10.1016/S1389-0344(03)00067-4

    Article  CAS  PubMed  Google Scholar 

  45. Amorim RD, Rodrigues JA, Holanda ML et al (2012) Antimicrobial effect of a crude sulfated polysaccharide from the red seaweed Gracilaria ornata. Braz Arch Biol Technol 55:171–181. https://doi.org/10.1590/S1516-89132012000200001

    Article  CAS  Google Scholar 

  46. Sasidharan S, Darah I, Noordin MK (2010) In vitro antimicrobial activity against Pseudomonas aeruginosa and acute oral toxicity of marine algae Gracilaria changii. New Biotechnol 27:390–396. https://doi.org/10.1016/j.nbt.2010.02.002

    Article  CAS  Google Scholar 

  47. Dayuti S (2018) Antibacterial activity of red algae (Gracilaria verrucosa) extract against Escherichia coli and Salmonella typhimurium. IOP Conf Ser: Earth Environ Sci 137:012074. https://doi.org/10.1088/1755-1315/137/1/012074

    Article  Google Scholar 

  48. Baliano AP, Pimentel EF, Buzin AR et al (2016) Brown seaweed Padina gymnospora is a prominent natural wound-care product. Rev Bras Farmacogn 26:714–719. https://doi.org/10.1016/j.bjp.2016.07.003

    Article  CAS  Google Scholar 

  49. Nagayama K, Iwamura Y, Shibata T et al (2002) Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J Antimicrob Chemother 50:889–893. https://doi.org/10.1093/jac/dkf222

    Article  CAS  PubMed  Google Scholar 

  50. Choi JG, Kang OH, Brice OO et al (2010) Antibacterial activity of Ecklonia cava against methicillin-resistant Staphylococcus aureus and Salmonella spp. Foodborne Pathog Dis 7:435–441. https://doi.org/10.1089/fpd.2009.0434

    Article  CAS  PubMed  Google Scholar 

  51. Lee DS, Kang MS, Hwang HJ et al (2008) Synergistic effect between dieckol from Ecklonia stolonifera and β-lactams against methicillin-resistant Staphylococcus aureus. Biotechnol Bioprocess Eng 13:758–764. https://doi.org/10.1007/s12257-008-0162-9

    Article  CAS  Google Scholar 

  52. Vijayabaskar P, Vaseela N, Thirumaran G (2012) Potential antibacterial and antioxidant properties of a sulfated polysaccharide from the brown marine algae Sargassum swartzii. Chin J Nat Med 10:421–428. https://doi.org/10.1016/S1875-5364(12)60082-X

    Article  CAS  Google Scholar 

  53. Poongothai E (2018) Antimicrobial activity of aqueous and cow-urine extracts of Sargassum wightii (sea weed) on multiple drug resistant pathogens. Int J Rec Adv Pharm Res 2:4–87

    Google Scholar 

  54. Sangeetha J, Gayathri S, Rajeshkumar S (2017) Antimicrobial assessment of marine brown algae Sargassum whitti against UTI pathogens and its phytochemical analysis. Res J Pharm Technol 10:1905–1910. https://doi.org/10.5958/0974-360X.2017.00334.1

    Article  Google Scholar 

  55. Setyati WA, Pramesti R, Susanto AB et al (2020) In vitro antibacterial study and spectral analysis of brown seaweed Sargassum crassifolium extract from Karimunjawa Islands, Jepara. IOP Conf Ser: Earth Environ Sci 530:012028. https://doi.org/10.1088/1755-1315/530/1/012028

    Article  Google Scholar 

  56. Tajbakhsh S, Pouyan M, Zandi K et al (2011) In vitro study of antibacterial activity of the alga Sargassum oligocystum from the Persian Gulf. Eur Rev Med Pharmacol Sci 15:293–298

    CAS  PubMed  Google Scholar 

  57. Akremi N, Cappoen D, Anthonissen R et al (2017) Phytochemical and in vitro antimicrobial and genotoxic activity in the brown algae Dictyopteris membranacea. S Afr J Bot 108:308–314. https://doi.org/10.1016/j.sajb.2016.08.009

    Article  CAS  Google Scholar 

  58. Corona E, Fernandez-Acero J, Bartual A (2017) Screening study for antibacterial activity from marine and freshwater microalgae. Int J Pharma Bio Sci 8:189–194. https://doi.org/10.22376/ijpbs.2017.8.1p189-194

    Article  Google Scholar 

  59. Kini S, Divyashree M, Mani MK et al (2020) Algae and cyanobacteria as a source of novel bioactive compounds for biomedical applications. Adv Cyanobacterial Biol. https://doi.org/10.1016/B978-0-12-819311-2.00012-7

    Article  Google Scholar 

  60. Bishoyi AK, Sahoo CR, Sahoo AP et al (2021) Bio-synthesis of silver nanoparticles with the brackish water blue-green alga Oscillatoria princeps and antibacterial assessment. Appl Nanosci 11:389–398. https://doi.org/10.1007/s13204-020-01593-7

    Article  CAS  Google Scholar 

  61. Sahoo CR, Maharana S, Mandhata CP et al (2020) Biogenic silver nanoparticle synthesis with cyanobacterium Chroococcus minutus isolated from Baliharachandi sea-mouth, Odisha, and in vitro antibacterial activity. Saudi J Biol Sci 27:1580–1586. https://doi.org/10.1016/j.sjbs.2020.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Singh RK, Tiwari SP, Rai AK et al (2011) Cyanobacteria: an emerging source for drug discovery. J Antibiot Res 64:401–412. https://doi.org/10.1038/ja.2011.21

    Article  CAS  Google Scholar 

  63. Carpine R, Sieber S (2021) Antibacterial and antiviral metabolites from cyanobacteria: their application and their impact on human health. Curr Res Biotechnol 3:65–81. https://doi.org/10.1016/j.crbiot.2021.03.001

    Article  CAS  Google Scholar 

  64. Molina-Grima E, García-Camacho F, Acién-Fernández FG et al (2021) Pathogens and predators impacting commercial production of microalgae and cyanobacteria. Biotechnol Adv 8:107884. https://doi.org/10.1016/j.biotechadv.2021.107884

    Article  CAS  Google Scholar 

  65. Osman A, Salama A, Ghany AA et al (2015) Antibacterial activity and mechanism of action of phycocyanin extracted from an egyptian strain of Anabaena oryzae SOS13. Zagazig J Agric Res 42:309–321

    Google Scholar 

  66. Wright AD, Papendorf O, König GM (2005) Ambigol C and 2, 4-dichlorobenzoic acid, natural products produced by the terrestrial cyanobacterium Fischerella ambigua. J Nat Prod 68:459–461. https://doi.org/10.1021/np049640w

    Article  CAS  PubMed  Google Scholar 

  67. Kadam SU, O’Donnell CP, Rai DK et al (2015) Laminarin from Irish brown seaweeds Ascophyllum nodosum and Laminaria hyperborea: ultrasound assisted extraction, characterization and bioactivity. Mar Drugs 13:4270–4280. https://doi.org/10.3390/md13074270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kubota T, Iwai T, Sakai K et al (2014) Amphidinins C-F, amphidinolide Q analogues from marine dinoflagellate Amphidinium sp. Org Lett 16:5624–5627. https://doi.org/10.1021/ol502685z

    Article  CAS  PubMed  Google Scholar 

  69. Najdenski HM, Gigova LG, Iliev II et al (2013) Antibacterial and antifungal activities of selected microalgae and cyanobacteria. Int J Food Sci 48:1533–1540. https://doi.org/10.1111/ijfs.12122

    Article  CAS  Google Scholar 

  70. Sarada DV, Sreenath Kumar C, Rengasamy R (2011) Purified C-phycocyanin from Spirulina platensis (Nordstedt) Geitler: a novel and potent agent against drug resistant bacteria. World J Microbiol Biotechnol 27:779–783. https://doi.org/10.1007/s11274-010-0516-2

    Article  CAS  Google Scholar 

  71. Vairappan CS, Suzuki M, Ishii T et al (2008) Antibacterial activity of halogenated sesquiterpenes from Malaysian Laurencia spp. Phytochemistry 69:2490–2494. https://doi.org/10.1016/j.phytochem.2008.06.015

    Article  CAS  PubMed  Google Scholar 

  72. Swamy MA (2011) Marine algal sources for treating bacterial diseases. Adv Food Nutr Res 64:71–84. https://doi.org/10.1016/B978-0-12-387669-0.00006-5

    Article  CAS  Google Scholar 

  73. Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89:47–57

    CAS  Google Scholar 

  74. Falch BS, König GM, Wright AD et al (1995) Biological activities of cyanobacteria: evaluation of extracts and pure compounds. Planta Med 61:321–328. https://doi.org/10.1055/s-2006-958092

    Article  CAS  PubMed  Google Scholar 

  75. Mo S, Krunic A, Chlipala G et al (2009) Antimicrobial ambiguine isonitriles from the cyanobacterium Fischerella ambigua. J Nat Prod 72:894–899. https://doi.org/10.1021/np800751j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Banker R, Carmeli S (1998) Tenuecyclamides A− D, Cyclic Hexapeptides from the cyanobacterium Nostoc spongiaeforme var. tenue. J Nat Prod 61:1248–1251. https://doi.org/10.1021/np980138j

    Article  CAS  PubMed  Google Scholar 

  77. Thanh Doan N, Rickards RW, Rothschild JM et al (2000) Allelopathic actions of the alkaloid 12-epi-hapalindole E isonitrile and calothrixin A from cyanobacteria of the genera Fischerella and Calothrix. J Appl Phycol 12:409–416. https://doi.org/10.1023/A:1008170007044

    Article  Google Scholar 

  78. Bui HT, Jansen R, Pham HT et al (2007) Carbamidocyclophanes A− E, chlorinated paracyclophanes with cytotoxic and antibiotic activity from the vietnamese cyanobacterium Nostoc sp. J Nat Prod 70:499–503. https://doi.org/10.1021/np060324m

    Article  CAS  PubMed  Google Scholar 

  79. Mundt S, Kreitlow S, Jansen R (2003) Fatty acids with antibacterial activity from the cyanobacterium Oscillatoria redekei HUB 051. J Appl Phycol 15:263–267. https://doi.org/10.1023/A:1023889813697

    Article  CAS  Google Scholar 

  80. Choi H, Engene N, Smith JE et al (2010) Crossbyanols A− D, toxic brominated polyphenyl ethers from the Hawai’ian bloom-forming Cyanobacterium Leptolyngbya crossbyana. J Nat Prod 73:517–522. https://doi.org/10.1021/np900661g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ishida K, Matsuda H, Murakami M et al (1997) Kawaguchipeptin B, an antibacterial cyclic undecapeptide from the cyanobacterium Microcystis aeruginosa. J Nat Prod 60:724–726. https://doi.org/10.1021/np970146k

    Article  CAS  PubMed  Google Scholar 

  82. Zainuddin EN, Jansen R, Nimtz M et al (2009) Lyngbyazothrins A− D, antimicrobial cyclic undecapeptides from the cultured cyanobacterium Lyngbya sp. J Nat Prod 72:1373–1378. https://doi.org/10.1021/np8007792

    Article  CAS  PubMed  Google Scholar 

  83. Swain SS, Paidesetty SK, Padhy RN (2017) Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria. Biomed Pharmacother 90:760–776. https://doi.org/10.1016/j.biopha.2017.04.030

    Article  CAS  PubMed  Google Scholar 

  84. Nagatsu A, Kajitani H, Sakakibara J (1995) Muscoride A: A new oxazole peptide alkaloid from freshwater cyanobacterium Nostoc muscorum. Tetrahedron Lett 36:4097–4100. https://doi.org/10.1016/0040-4039(95)00724-Q

    Article  CAS  Google Scholar 

  85. Pérez Gutiérrez RM, Martínez Flores A, Vargas Solís R et al (2008) Two new antibacterial norabietane diterpenoids from cyanobacteria, Microcoleous lacustris. J Nat Med 62:328–331. https://doi.org/10.1007/s11418-008-0238-z

    Article  CAS  PubMed  Google Scholar 

  86. Volk RB, Furkert FH (2006) Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res 161:180–186. https://doi.org/10.1016/j.micres.2005.08.005

    Article  CAS  PubMed  Google Scholar 

  87. Jaki B, Orjala J, Heilmann J et al (2000) Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune. J Nat Prod 63:339–343. https://doi.org/10.1021/np9903090

    Article  CAS  PubMed  Google Scholar 

  88. Becher PG, Keller S, Jung G et al (2007) Insecticidal activity of 12-epi-hapalindole J isonitrile. Phytochemistry 68:2493–2497. https://doi.org/10.1016/j.phytochem.2007.06.024

    Article  CAS  PubMed  Google Scholar 

  89. Hirata K, Yoshitomi S, Dwi S et al (2003) Bioactivities of nostocine a produced by a freshwater cyanobacterium Nostoc spongiaeforme TISTR 8169. J Biosci Bioeng 95:512–517. https://doi.org/10.1016/S1389-1723(03)80053-1

    Article  CAS  PubMed  Google Scholar 

  90. Ploutno A, Carmeli S (2000) Nostocyclyne A, a novel antimicrobial cyclophane from the cyanobacterium Nostoc sp. J Nat Prod 63:1524–1526. https://doi.org/10.1021/np0002334

    Article  CAS  PubMed  Google Scholar 

  91. An T, Kumar TK, Wang M et al (2007) Structures of pahayokolides A and B, cyclic peptides from a Lyngbya sp. J Nat Prod 70:730–735. https://doi.org/10.1021/np060389p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pergament I, Carmeli S (1994) Schizotrin A; a novel antimicrobial cyclic peptide from a cyanobacterium. Tetrahedron Lett 35:8473–8476. https://doi.org/10.1016/S0040-4039(00)74436-4

    Article  CAS  Google Scholar 

  93. MacMillan JB, Molinski TF (2005) Majusculoic acid, a brominated cyclopropyl fatty acid from a marine cyanobacterial mat assemblage. J Nat Prod 68:604–606. https://doi.org/10.1021/np049596k

    Article  CAS  PubMed  Google Scholar 

  94. Matern U, Schleberger C, Jelakovic S et al (2003) Binding structure of elastase inhibitor scyptolin A. Chem Biol 10:997–1001. https://doi.org/10.1016/j.chembiol.2003.10.001

    Article  CAS  PubMed  Google Scholar 

  95. Helms GL, Moore RE, Niemczura WP et al (1988) Scytonemin A, a novel calcium antagonist from a blue-green alga. J Org Chem Res 53:1298–1307. https://doi.org/10.1021/jo00241a033

    Article  CAS  Google Scholar 

  96. Ishibashi M, Moore RE, Patterson GM et al (1986) Scytophycins, cytotoxic and antimycotic agents from the cyanophyte Scytonema pseudohofmanni. J Org Chem Res 51:5300–5306. https://doi.org/10.1021/jo00376a047

    Article  CAS  Google Scholar 

  97. Prinsep MR, Caplan FR, Moore RE et al (1992) Tolyporphin, a novel multidrug resistance reversing agent from the blue-green alga Tolypothrix nodosa. J Am Chem Soc 114:385–387. https://doi.org/10.1021/ja00027a072

    Article  CAS  Google Scholar 

  98. Moore RE, Patterson GM, Mynderse JS et al (1986) Toxins from cyanophytes belonging to the Scytonemataceae. Pure Appl Chem 58:263–271. https://doi.org/10.1351/pac198658020263

    Article  CAS  Google Scholar 

  99. Bleakley S, Hayes M (2017) Algal proteins: extraction, application, and challenges concerning production. Foods 6:33. https://doi.org/10.3390/foods6050033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Dean, Dr. S. Mishra, Institute of Medical Sciences & Sum Hospital, Bhubaneswar, for the facilities.

Funding

This work was supported by the SOADU-PhD fellowship of AK Bishoyi (Regd. No.1981611008/2019), Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, Odisha, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chita Ranjan Sahoo or Rabindra Nath Padhy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Informed Consent

This article contains no studies with human participants or animals performed by authors.

Publication Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bishoyi, A.K., Lakra, A., Mandhata, C.P. et al. Prospective Phycocompounds for Developing Therapeutics for Urinary Tract Infection. Curr Microbiol 81, 35 (2024). https://doi.org/10.1007/s00284-023-03535-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03535-2

Navigation