Skip to main content

Advertisement

Log in

Stenotrophomonas maltophilia Belonging to Novel Sequence Types ST473 and ST474 in Wild Birds Inhabiting the Brazilian Amazonia

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Stenotrophomonas maltophilia is an opportunistic human pathogen associated with nosocomial and community-acquired infections. We have conducted a microbiological and genomic surveillance study of broad-spectrum cephalosporin- and carbapenem-resistant Gram-negative bacteria colonizing wild birds inhabiting the Brazilian Amazonia. Strikingly, two S. maltophilia strains (SM79 and SM115) were identified in Plain-throated antwren (Isleria hauxwelli) passerines affected by Amazonian fragmentation and degradation. Noteworthy, SM79 and SM115 strains belonged to new sequence types (STs) ST474 and ST473, respectively, displaying resistance to broad-spectrum β-lactams, aminoglycosides and/or fluoroquinolones. In this regard, resistome analysis confirmed efflux pumps (smeABC, smeDEF, emrAB-tolC and macB), blaL1 and blaL2, aph(3’)-IIc and aac(6’)-Iak, and Smqnr resistance genes. Comparative phylogenomic analysis with publicly available S. maltophilia genomes clustered ST473 and ST474 with human strains, whereas the ST474 was also grouped with S. maltophilia strains isolated from water and poultry samples. In summary, we report two novel sequence types of S. maltophilia colonizing wild Amazonian birds. The presence of opportunistic multidrug-resistant pathogens in wild birds, from remotes areas, could represent an ecological problem since these animals could easily promote long-distance dispersal of medically important antimicrobial-resistant bacteria. Therefore, while our results could provide a baseline for future epidemiological genomic studies, considering the limited information regarding S. maltophilia circulating among wild animals, additional studies are necessary to evaluate the clinical impact and degree of pathogenicity of this human opportunistic pathogen in wild birds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data Availability

The raw sequence data and whole genome assemblies generated duringthe current study are available in the National Center for Biotechnology Information (NCBI) assembly accession numbers correspond to GCA_027941455.1 and GCA_027941475.1, respectively.

References

  1. Berg G, Martinez JL (2015) Friends or foes: can we make a distinction between beneficial and harmful strains of the Stenotrophomonas maltophilia complex? Front Microbiol 6:241. https://doi.org/10.3389/fmicb.2015.00241

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brooke JS (2021) Advances in the microbiology of Stenotrophomonas maltophilia. Clin Micro Rev 34:e0003019. https://doi.org/10.1128/CMR.00030-19

    Article  PubMed  Google Scholar 

  3. Gröschel MI, Meehan CJ, Barilar I, Diricks M, Gonzaga A, Steglich M, Conchillo-Solé O, Scherer IC, Mamat U, Luz CF, De Bruyne K, Utpatel C, Yero D, Gibert I, Daura X, Kampmeier S, Rahman NA, Kresken M, van der Werf TS, Alio I, Streit WR, Zhou K, Schwartz T, Rossen JWA, Farhat MR, Schaible UE, Nübel U, Rupp J, Steinmann J, Niemann S, Kohl TA (2020) The phylogenetic landscape and nosocomial spread of the multidrug-resistant opportunist Stenotrophomonas maltophilia. Nat Commun 11:2044. https://doi.org/10.1038/s41467-020-15123-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Falagas ME, Kastoris AC, Vouloumanou EK, Dimopoulos G (2009) Community-acquired Stenotrophomonas maltophilia infections: a systematic review. Eur J Clin Microbiol Infect Dis 28:719–730. https://doi.org/10.1007/s10096-009-0709-5

    Article  CAS  PubMed  Google Scholar 

  5. Chang YT, Lin CY, Chen YH, Hsueh PR (2015) Update on infections caused by Stenotrophomonas maltophilia with particular attention to resistance mechanisms and therapeutic options. Front Microbiol 6:893. https://doi.org/10.3389/fmicb.2015.00893

    Article  PubMed  PubMed Central  Google Scholar 

  6. Raad M, Abou Haidar M, Ibrahim R, Rahal R, Abou Jaoude J, Harmouche C, Habr B, Ayoub E, Saliba G, Sleilaty G, Mounzer K, Saliba R, Riachy M (2023) Stenotrophomonas maltophilia pneumonia in critical COVID-19 patients. Sci Rep 13:3392. https://doi.org/10.1038/s41598-023-28438-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hafiz TA, Aldawood E, Albloshi A, Alghamdi SS, Mubaraki MA, Alyami AS, Aldriwesh MG (2022) Stenotrophomonas maltophilia epidemiology, resistance characteristics, and clinical outcomes: understanding of the recent three years’ trends. Microorganisms 10:2506. https://doi.org/10.3390/microorganisms10122506

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hoefel D, Monis PT, Grooby WL, Andrews S, Saint CP (2005) Profiling bacterial survival through a water treatment process and subsequent distribution system. J Appl Microbiol 99:175–186. https://doi.org/10.1111/j.1365-2672.2005.02573.x

    Article  CAS  PubMed  Google Scholar 

  9. Glady-Croue J, Niu XZ, Ramsay JP, Watkin E, Murphy RJT, Croue JP (2018) Survival of antibiotic resistant bacteria following artificial solar radiation of secondary wastewater effluent. Sci Total Environ 1:1005–1011. https://doi.org/10.1016/j.scitotenv.2018.01.101

    Article  CAS  Google Scholar 

  10. Sanz-García F, Gil-Gil T, Laborda P, Ochoa-Sánchez LE, Martínez JL, Hernando-Amado S (2021) Coming from the wild: multidrug resistant opportunistic pathogens presenting a primary, not human-linked, environmental habitat. Int J Mol Sci 22:8080. https://doi.org/10.3390/ijms22158080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jayol A, Corlouer C, Haenni M, Darty M, Maillard K, Desroches M, Lamy B, Jumas-Bilak E, Madec JY, Decousser JW (2018) Are animals a source of Stenotrophomonas maltophilia in human infections? Contributions of a nationwide molecular study. Eur J Clin Microbiol Infect Dis 37:1039–1045. https://doi.org/10.1007/s10096-018-3203-0

    Article  CAS  PubMed  Google Scholar 

  12. Clinical and Laboratory Standards Institute (CLSI) (2022) Performance standards forantimicrobial susceptibility testing. In: CLSI supplement M100, 32nd ed. Clinical and Laboratory Standards Institute, Wayne.

  13. Jacobs L, McMahon BH, Berendzen J, Longmire J, Gleasner C, Hengartner NW, Vuyisich M, Cohn JR, Jenkins M, Bartlow AW, Fair JM (2019) California condor microbiomes: bacterial variety and functional properties in captive bred individuals. PLoS ONE 14:e0225858. https://doi.org/10.1371/journal.pone.0225858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. BirdLife International (2016) Isleria hauxwelli, the IUCN red list of threatened species 2016: e.T22701457A93830553. https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22701457A93830553.en. Accessed on 17 Oct 2023.

  15. Argudín MA, Deplano A, Meghraoui A, Dodémont M, Heinrichs A, Denis O, Nonhoff C, Roisin S (2017) Bacteria from animals as a pool of antimicrobial resistance genes. Antibiotics 6:12. https://doi.org/10.3390/antibiotics6020012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de Carvalho MPN, Fernandes MR, Sellera FP, Lopes R, Monte DF, Hippólito AG, Milanelo L, Raso TF, Lincopan N (2020) International clones of extended-spectrum β-lactamase (CTX-M)-producing Escherichia coli in peri-urban wild animals. Brazil Transbound Emerg Dis 5:1804–1815. https://doi.org/10.1111/tbed.13558

    Article  CAS  Google Scholar 

  17. Ewbank AC, Fuentes-Castillo D, Sacristán C, Cardoso B, Esposito F, Fuga B, Macedo EC, Lincopan N, Catão-Dias JL (2022) Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli survey in wild seabirds at a pristine atoll in the southern Atlantic Ocean, Brazil: first report of the O25b-ST131 clone harboring blaCTX-M-8. Sci Total Environ 806:150539. https://doi.org/10.1016/j.scitotenv.2021.150539

    Article  CAS  PubMed  Google Scholar 

  18. Ahlstrom CA, Woksepp H, Sandegren L, Mohsin M, Hasan B, Muzyka D, Hernandez J, Aguirre F, Tok A, Söderman J, Olsen B, Ramey AM, Bonnedahl J (2022) Genomically diverse carbapenem resistant Enterobacteriaceae from wild birds provide insight into global patterns of spatiotemporal dissemination. Sci Total Environ 824:153632. https://doi.org/10.1016/j.scitotenv.2022.153632

    Article  CAS  PubMed  Google Scholar 

  19. Avison MB, Higgins CS, von Heldreich CJ, Bennett PM, Walsh TR (2001) Plasmid location and molecular heterogeneity of the L1 and L2 beta-lactamase genes of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 45:413–419. https://doi.org/10.1128/AAC.45.2.413-419.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kawauchi R, Tada T, Sherchan JB, Shrestha S, Tohya M, Hishinuma T, Kirikae T, Sherchand JB (2022) Stenotrophomonas maltophilia from Nepal producing two novel antibiotic inactivating enzymes, a class A β-lactamase KBL-1 and an aminoglycoside 6’-N-acetyltransferase AAC(6’)-Iap. Microbiol Spectr 10:e0114322. https://doi.org/10.1128/spectrum.01143-22

    Article  CAS  PubMed  Google Scholar 

  21. Sánchez MB, Martínez JL (2010) Smqnr contributes to intrinsic resistance to quinolones in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 54:580–581. https://doi.org/10.1128/AAC.00496-09

    Article  CAS  PubMed  Google Scholar 

  22. Valdezate S, Vindel A, Saéz-Nieto JA, Baquero F, Cantón R (2005) Preservation of topoisomerase genetic sequences during in vivo and in vitro development of high-level resistance to ciprofloxacin in isogenic Stenotrophomonas maltophilia strains. J Antimicrob Chemother 56:220–223. https://doi.org/10.1093/jac/dki182

    Article  CAS  PubMed  Google Scholar 

  23. Li X, McLaughlin RW, Grover NA (2023) Characterization of antibiotic-resistant Stenotrophomonas isolates from painted turtles living in the wild. Curr Microbiol 80:93. https://doi.org/10.1007/s00284-023-03193-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico. The authors thank Cefar Diagnóstica Ltda (São Paulo, Brazil) and CEFAP-GENIAL facility for kindly supplying antibiotic disks for susceptibility testing and Illumina sequencing, respectively. Nilton Lincopan is a research fellow of CNPq (314336/2021-4). We are grateful to Wilson Neto for the support provided during the field trips in Fazenda Fartura.

Funding

This study was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (2020/08224-9 and 2019/15578-4), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq,422984/2021-3, and 314336/2021-4), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). Gislaine Dalazen, Fábio Parra Sellera, Herrison Fontana and Brenda Cardoso are research fellows of CAPES (88882.333521/2019-01, 88887.463868/2019-00, 88887.506496/2020-00 and 88882.333054/2019-01, respectively). Danny Fuentes-Castillo was a research fellow of Comisión Nacional de Investigación Científica y Tecnológica (CONICYT BCH 72170436). Fernanda Esposito is a research fellow of FAPESP (2019/15578-4). Nilton Lincopan is a research fellow of CNPq (314336/2021-4).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Gislaine Dalazen, Fábio Parra Sellera, Danny Fuentes-Castillo, Elder Sano, Herrison Fontana, Brenda Cardoso, Fernanda Esposito, Luis Fábio Silveira, Eliana Reiko Matushima, and Nilton Lincopan. The first draft of the manuscript was written by Gislaine Dalazen and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Gislaine Dalazen or Nilton Lincopan.

Ethics declarations

Conflict of interest

The authors declare that that there is no conflict of interest.

Ethical Approval

Ethical approval was received from School of Veterinary Medicine and Animal Science of the University of São Paulo (No. 5625041119). This study was carried out in compliance with the System Authorization and Information on Biodiversity (SISBIO) of the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA, License Number: 10013-5).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 40 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalazen, G., Sellera, F.P., Fuentes-Castillo, D. et al. Stenotrophomonas maltophilia Belonging to Novel Sequence Types ST473 and ST474 in Wild Birds Inhabiting the Brazilian Amazonia. Curr Microbiol 81, 20 (2024). https://doi.org/10.1007/s00284-023-03532-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03532-5

Navigation