Skip to main content
Log in

Modeling Global Monkeypox Infection Spread Data: A Comparative Study of Time Series Regression and Machine Learning Models

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The global impact of COVID-19 has heightened concerns about emerging viral infections, among which monkeypox (MPOX) has become a significant public health threat. To address this, our study employs a comprehensive approach using three statistical techniques: Distribution fitting, ARIMA modeling, and Random Forest machine learning to analyze and predict the spread of MPOX in the top ten countries with high infection rates. We aim to provide a detailed understanding of the disease dynamics and model theoretical distributions using country-specific datasets to accurately assess and forecast the disease’s transmission. The data from the considered countries are fitted into ARIMA models to determine the best time series regression model. Additionally, we employ the random forest machine learning approach to predict the future behavior of the disease. Evaluating the Root Mean Square Errors (RMSE) for both models, we find that the random forest outperforms ARIMA in six countries, while ARIMA performs better in the remaining four countries. Based on these findings, robust policy-making should consider the best fitted model for each country to effectively manage and respond to the ongoing public health threat posed by monkeypox. The integration of multiple modeling techniques enhances our understanding of the disease dynamics and aids in devising more informed strategies for containment and control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tiwari PK, Rai RK, Khajanchi S, Gupta RK, Misra AK (2021) Dynamics of coronavirus pandemic: effects of community awareness and global information campaigns. Eur Phys J Plus 136(10):994. https://doi.org/10.1140/epjp/s13360-021-01997-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cho CT, Wenner HA (1973) Monkeypox virus. Bacteriol Rev 37(1):1–18. https://doi.org/10.1128/br.37.1.1-18.1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Magnus PV, Andersen EK, Petersen KB, Birch-Andersen A (2009) A pox-like disease in cynomolgus monkeys. Acta Pathol Microbiol Scand 46(2):156–176. https://doi.org/10.1111/j.1699-0463.1959.tb00328.x

    Article  Google Scholar 

  4. Odom MR, Curtis Hendrickson R, Lefkowitz EJ (2009) Poxvirus protein evolution: family wide assessment of possible horizontal gene transfer events. Virus Res 144(1–2):233–249. https://doi.org/10.1016/j.virusres.2009.05.006

    Article  CAS  PubMed  Google Scholar 

  5. Diven DG (2001) An overview of poxviruses. J Am Acad Dermatol 44(1):1–16. https://doi.org/10.1067/mjd.2001.109302

    Article  CAS  PubMed  Google Scholar 

  6. Vivancos R, Anderson C, Blomquist P, Balasegaram S, Bell A, Bishop L, Brown CS, Chow Y, Edeghere O, Florence I, Logan S, Manley P, Crowe W, McAuley A, Shankar AG, Mora-Peris B, Paranthaman K, Prochazka M, Ryan C et al (2022) Community transmission of monkeypox in the United Kingdom, April to May 2022. Eurosurveillance. https://doi.org/10.2807/1560-7917.ES.2022.27.22.2200422

    Article  PubMed  PubMed Central  Google Scholar 

  7. World Health Organization. Mpox (Monkeypox) outbreak: global trends, world health organization (2022) https://worldhealthorg.shinyapps.io/MPOX_global/. Accessed 20 Dec 2022

  8. Adler H, Gould S, Hine P, Snell LB, Wong W, Houlihan CF, Osborne JC, Rampling T, Beadsworth MB, Duncan CJ, Dunning J, Fletcher TE, Hunter ER, Jacobs M, Khoo SH, Newsholme W, Porter D, Porter RJ, Ratcliffe L et al (2022) Clinical features and management of human monkeypox: a retrospective observational study in the UK. Lancet Infect Dis 22(8):1153–1162. https://doi.org/10.1016/S1473-3099(22)00228-6

    Article  PubMed  PubMed Central  Google Scholar 

  9. Miura F, van Ewijk CE, Backer JA, Xiridou M, Franz E, Op de Coul E, Brandwagt D, van Cleef B, van Rijckevorsel G, Swaan C, van den Hof S, Wallinga J (2022) Estimated incubation period for monkeypox cases confirmed in the Netherlands. EuroSurveillance 27(24):2200448. https://doi.org/10.2807/1560-7917.ES.2022.27.24.2200448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rao AK, Schulte J, Chen T-H, Hughes CM, Davidson W, Neff JM, Markarian M, Delea KC, Wada S, Liddell A, Alexander S, Sunshine B, Huang P, Honza HT, Rey A, Monroe B, Doty J, Christensen B, Delaney L et al (2022) Monkeypox in a traveler returning from Nigeria—Dallas, Texas, July 2021. MMWR Morb Mortal Wkly Rep 71(14):509–516. https://doi.org/10.1585/mmwr.mm7114a1

    Article  PubMed  PubMed Central  Google Scholar 

  11. CDC, US Department of Health, and Human Services (2006) Principles of epidemiology in public health practice: an introduction to applied epidemiology and biostatistics, Atlanta, GA: U.S. Department of health and human services, centers for disease control and prevention. https://stacks.cdc.gov/view/cdc/6914. Accessed 17 June 2023

  12. Kandula S, Yamana T, Pei S, Yang W, Morita H, Shaman J (2018) Evaluation of mechanistic and statistical methods in forecasting influenza-like illness. J R Soc Interface 15(144):20180174. https://doi.org/10.1098/rsif.2018.0174

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ren H, Li J, Yuan ZA, Hu JY, Yu Y, Lu YH (2013) The development of a combined mathematical model to forecast the incidence of hepatitis E in Shanghai China. BMC Infect Dis 13(1):421. https://doi.org/10.1186/1471-2334-13-421

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang X, Liu Y, Yang M, Zhang T, Young AA, Li X (2013) Comparative study of four time series methods in forecasting typhoid fever incidence in China. PLoS ONE 8(5):e63116. https://doi.org/10.1371/journal.pone.0063116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thomson MC, Molesworth AM, Djingarey MH, Yameogo KR, Belanger F, Cuevas LE (2006) Potential of environmental models to predict meningitis epidemics in Africa. Tropical Med Int Health 11(6):781–788. https://doi.org/10.1111/j.1365-3156.2006.01630.x

    Article  Google Scholar 

  16. Orbann C, Sattenspiel L, Miller E, Dimka J (2017) Defining epidemics in computer simulation models: how do definitions influence conclusions? Epidemics 19:24–32. https://doi.org/10.1016/j.epidem.2016.12.001

    Article  PubMed  Google Scholar 

  17. Kurbalija V, Radovanović M, Ivanović M, Schmidt D, Von Trzebiatowski GL, Burkhard HD, Hinrichs C (2014) Time-series analysis in the medical domain: a study of Tacrolimus administration and influence on kidney graft function. Comput Biol Med 50:19–31. https://doi.org/10.1016/j.compbiomed.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  18. Bernal JL, Cummins S, Gasparrini A (2017) Interrupted time series regression for the evaluation of public health interventions: a tutorial. Int J Epidemiol 46(1):348–355. https://doi.org/10.1093/ije/dyw098

    Article  PubMed  Google Scholar 

  19. Bernal JL, Soumerai S, Gasparrini A (2018) A methodological framework for model selection in interrupted time series studies. J Clin Epidemiol 103:82–91. https://doi.org/10.1016/j.jclinepi.2018.05.026

    Article  Google Scholar 

  20. Polwiang S (2020) The time series seasonal patterns of dengue fever and associated weather variables in Bangkok (2003–2017). BMC Infect Dis 20(1):208. https://doi.org/10.1186/s12879-020-4902-6

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gaudart J, Touré O, Dessay N, Dicko AL, Ranque S, Forest L, Demongeot J, Doumbo OK (2009) Modelling malaria incidence with environmental dependency in a locality of Sudanese savannah area. Mali Malaria J 8:61. https://doi.org/10.1186/1475-2875-8-61

    Article  Google Scholar 

  22. Wei W, Jiang J, Liang H, Gao L, Liang B, Huang J, Zang N, Liao Y, Yu J, Lai J, Qin F, Su J, Ye L, Chen H (2016) Application of a combined model with autoregressive integrated moving average (ARIMA) and generalized regression neural network (GRNN) in forecasting hepatitis incidence in heng county. China PloS One 11(6):e0156768. https://doi.org/10.1371/journal.pone.0156768

    Article  CAS  PubMed  Google Scholar 

  23. Zheng YL, Zhang LP, Zhang XL, Wang K, Zheng YJ (2015) Forecast model analysis for the morbidity of tuberculosis in Xinjiang. China PloS One 10(3):e0116832. https://doi.org/10.1371/journal.pone.0116832

    Article  CAS  PubMed  Google Scholar 

  24. He Z, Tao H (2018) Epidemiology and ARIMA model of positive-rate of influenza viruses among children in Wuhan, China: a nine-year retrospective study. Int J Infect Dis: Off Publ Int Soc Infect Dis 74:61–70. https://doi.org/10.1016/j.ijid.2018.07.003

    Article  CAS  Google Scholar 

  25. ArunKumar KE, Kalaga DV, Kumar CMS, Kawaji M, Brenza TM (2022) Comparative analysis of gated recurrent units (GRU), long short-term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends. Alex Eng J 61(10):7585–7603. https://doi.org/10.1016/j.aej.2022.01.011

    Article  Google Scholar 

  26. Prasad VK, Bhattacharya P, Bhavsar M, Verma A, Tanwar S, Sharma G, Bokoro PN, Sharma R (2022) ABV-CoViD: an ensemble forecasting model to predict availability of beds and ventilators for COVID-19 like pandemics. IEEE Access 10:74131–74151. https://doi.org/10.1109/ACCESS.2022.3190497

    Article  PubMed  Google Scholar 

  27. Cassels S, Clark SJ, Morris M (2008) Mathematical models for HIV transmission dynamics: tools for social and behavioral science research. J Acquir Immune Defic Syndr 47(Suppl 1):S34-39. https://doi.org/10.1097/QAI.0b013e3181605da3

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mondal J, Khajanchi S, Samui P (2022) Impact of media awareness in mitigating the spread of an infectious disease with application to optimal control. Eur Phys J Plus 137(8):983. https://doi.org/10.1140/epjp/s13360-022-03156-x

    Article  Google Scholar 

  29. Bera S, Khajanchi S, Roy TK (2023) Stability analysis of fuzzy HTLV-I infection model: a dynamic approach. J Appl Math Comput 69(1):171–199. https://doi.org/10.1007/s12190-022-01741-y

    Article  Google Scholar 

  30. Andraud M, Hens N, Marais C, Beutels P (2012) Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches. PLoS ONE 7(11):e49085. https://doi.org/10.1371/journal.pone.0049085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huppert A, Katriel G (2013) Mathematical modelling and prediction in infectious disease epidemiology. Clin Microbiol Infect 19(11):999–1005. https://doi.org/10.1111/1469-0691.12308

    Article  CAS  PubMed  Google Scholar 

  32. Xia ZQ, Wang SF, Li SL, Huang LY, Zhang WY, Sun GQ, Gai ZT, Jin Z (2015) Modeling the transmission dynamics of Ebola virus disease in Liberia. Sci Rep 5:13857. https://doi.org/10.1038/srep13857

    Article  PubMed  PubMed Central  Google Scholar 

  33. Drake JM, Bakach I, Just MR, O’Regan SM, Gambhir M, Fung ICH (2015) Transmission models of historical ebola outbreaks. Emerg Infect Dis 21(8):1447–1450. https://doi.org/10.3201/eid2108.141613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Atinuke B, Bagbe AS (2019) Statistical analysis of ebola virus disease outbreak in some West Africa Countries using S-I-R model. Ann Biostat Biometric Appl. https://doi.org/10.33552/ABBA.2019.02.000540

    Article  Google Scholar 

  35. Hayman DTS, Sam John R, Rohani P (2022) Transmission models indicate Ebola virus persistence in non-human primate populations is unlikely. J R Soc Interface 19(187):20210638. https://doi.org/10.1098/rsif.2021.0638

    Article  PubMed  PubMed Central  Google Scholar 

  36. Driessche PVD (2017) Reproduction numbers of infectious disease models. Infect Dis Model 2(3):288–303. https://doi.org/10.1016/j.idm.2017.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dwivedi A, Keval R, Khajanchi S (2022) Modeling optimal vaccination strategy for dengue epidemic model: a case study of India. Phys Scr 97(8):085214. https://doi.org/10.1088/1402-4896/ac807b

    Article  Google Scholar 

  38. Li YW, Peng B, Zhou R, Zhan C, Liu YZ et al (2020) Mathematical modeling and epidemic prediction of COVID-19 and its significance to epidemic prevention and control measures. Ann Infect Dis Epidemiol 5(1):1052

    Google Scholar 

  39. Moein S, Nickaeen N, Roointan A, Borhani N, Heidary Z, Javanmard SH, Ghaisari J, Gheisari Y (2021) Inefficiency of SIR models in forecasting COVID-19 epidemic: a case study of Isfahan. Sci Rep 11(1):4725. https://doi.org/10.1038/s41598-021-84055-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang Q, Yi C, Vajdi A, Cohnstaedt LW, Wu H, Guo X, Scoglio CM (2020) Short-term forecasts and long-term mitigation evaluations for the COVID-19 epidemic in Hubei Province, China. Infect Dis Model 5:563–574. https://doi.org/10.1016/j.idm.2020.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  41. Alvarez MM, González-González E, Trujillo-de Santiago G (2021) Modeling COVID-19 epidemics in an excel spreadsheet to enable first-hand accurate predictions of the pandemic evolution in urban areas. Sci Rep 11(1):4327. https://doi.org/10.1038/s41598-021-83697-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang J, Liu Y, Liu X, Shen K (2022) A modified SIR model for the COVID-19 epidemic in China. J Phys: Conf Ser 2148(1):012002. https://doi.org/10.1088/1742-6596/2148/1/012002

    Article  CAS  Google Scholar 

  43. Bartholomew D (1971) Time series analysis forecasting and control, vol 22. Wiley, Hoboke, pp 199–201

    Google Scholar 

  44. Priebe S, Huxley P, Knight S, Evans S (1999) Application and results of the manchester short assessment of quality of life (MANSA). Int J Soc Psychiatry 45(1):7–12. https://doi.org/10.1177/002076409904500102

    Article  CAS  PubMed  Google Scholar 

  45. Qureshi M, Khan S, Bantan RAR, Daniyal M, Elgarhy M, Marzo RR, Lin Y (2022) Modeling and forecasting monkeypox cases using stochastic models. J Clin Med 11(21):6555. https://doi.org/10.3390/jcm11216555

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to Babasaheb Bhimrao Ambedkar University for providing us with the basic research infrastructure, which helped us in carrying out this work.

Funding

This work is supported by the Council of Scientific and Technology Research- Uttar Pradesh, Government of Uttar Pradesh, through Project No. CST/D-1310.

Author information

Authors and Affiliations

Authors

Contributions

SKY and YA: conceived the idea. SAK and VS: retrieved the data and performed the analysis. SKY: wrote the first draft. SKY and YA: edited the final version and coordinated the overall study.

Corresponding authors

Correspondence to Subhash Kumar Yadav or Yusuf Akhter.

Ethics declarations

Conflict of interest

We do not have any conflict of interest to report.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Khan, S.A., Yadav, S.K. et al. Modeling Global Monkeypox Infection Spread Data: A Comparative Study of Time Series Regression and Machine Learning Models. Curr Microbiol 81, 15 (2024). https://doi.org/10.1007/s00284-023-03531-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03531-6

Navigation