Skip to main content
Log in

Phenylpropanoid Derivatives and Their Role in Plants’ Health and as antimicrobials

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Phenylpropanoids belong to a wide group of compounds commonly secreted by plants and involved in different roles related with plant growth and development and the defense against plant pathogens. Some key intermediates from shikimate pathway are used to synthesize these compounds. In this way, by the phenylpropanoid pathway several building blocks are achieved to obtain flavonoids, isoflavonoids, coumarins, monolignols, phenylpropenes, phenolic acids, stilbenes and stilbenoids, and lignin, suberin and sporopollenin for plant–microbe interactions, structural support and mechanical strength, organ pigmentation, UV protection and acting against pathogens. Some reviews have revised phenylpropanoid biosynthesis and regulation of the biosynthetic pathways. In this review, the most important chemical structures about phenylpropanoid derivatives are summarized grouping them in different sections according to their structure. We have put special attention on their different roles in plants especially in plant health, growth and development and plant-environment interactions. Their interaction with microorganisms is discussed including their role as antimicrobials. We summarize all new findings about new developed structures and their involvement in plants health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20. https://doi.org/10.1093/mp/ssp106

    Article  CAS  PubMed  Google Scholar 

  2. Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes in species interaction. Science 301:1377–1380. https://doi.org/10.1126/science.1083245

    Article  CAS  PubMed  Google Scholar 

  3. Deng Y, Lu S (2017) Biosynthesis and regulation of phenylpropanoids in plants. Crit Rev Plant Sci 36:257–290. https://doi.org/10.1080/07352689.2017.1402852

    Article  Google Scholar 

  4. Subramanian S, Stacey G, Yu O (2007) Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci 12:82–85. https://doi.org/10.1016/j.tplants.2007.06.006

    Article  CAS  Google Scholar 

  5. Gu XY, Foley ME, Horvath DP, Anderson JV, Feng J, Zhang L, Mowry CR, Ye H, Suttle JC, Kadowaki K, Chen Z (2011) Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice. Genetics 189:1515–1524. https://doi.org/10.1534/genetics.111.131169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dwivedi SL, Upadhyaya HD, Chung IM, DeVita P, García-Lara S, Guajardo-Flores D, Gutiérrez-Uribe JA, Serna-Saldívar SO, Rajakumar G, Sahrawat KL, Kumar J, Ortiz R (2016) Exploiting phenylpropanoid derivatives to enhance the nutraceutical values of cereals and legumes. Front Plant Sci 7:763. https://doi.org/10.3389/fpls.2016.00763

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tohge T, de Souza LP, Fernie AR (2017) Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. J Exp Bot 68:4013–4028. https://doi.org/10.1093/jxb/erx177

    Article  CAS  PubMed  Google Scholar 

  8. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:162750. https://doi.org/10.1155/2013/162750

    Article  CAS  Google Scholar 

  9. Ali HM, Almagribi W, Alrashidi MN (2016) Antiradical and reductant activities of anthocyanidins and anthocyanins, structure-activity relationship and synthesis. Food Chem 194:1275–1282. https://doi.org/10.1016/j.foodchem.2015.09.003

    Article  CAS  PubMed  Google Scholar 

  10. Smeriglio A, Barreca D, Bellocco E, Trombetta D (2016) Chemistry, pharmacology and health benefits of anthocyanins. Phytother Res 30:1265–1286. https://doi.org/10.1002/ptr.5642

    Article  CAS  PubMed  Google Scholar 

  11. Foudah AI, Abdel-Kader MS (2017) 'Isoflavonoids'. In: Justino GC (ed) Flavonoids-from biosynthesis to human health. IntechOpen, London. https://doi.org/10.5772/intechopen.68701

  12. Nakayama T, Takahashi S, Waki T (2019) Formation of flavonoid metabolons: functional significance of protein-protein interactions and impact on flavonoid chemodiversity. Front Plant Sci 10:821. https://doi.org/10.3389/fpls.2019.00821

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ververidis F, Trantas E, Douglas C, Vollmer G, Kretzschmar G, Panopoulos N (2007) Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: chemical diversity, impacts on plant biology and human health. Biotechnol J 2:1214–1234. https://doi.org/10.1002/biot.200700084

    Article  CAS  PubMed  Google Scholar 

  14. Sudheeran PK, Ovadia R, Galsarker O, Maoz I, Sela N, Maurer D, Feygenberg O, Oren Shamir M, Alkan N (2020) Glycosylated flavonoids: fruit’s concealed antifungal arsenal. New Phytol 225:1788–1798. https://doi.org/10.1111/nph.16251

    Article  CAS  PubMed  Google Scholar 

  15. Rudall PJ (2020) Colorful cones: how did flower color first evolve? J Exp Bot 71:759–767. https://doi.org/10.1093/jxb/erz479

    Article  CAS  PubMed  Google Scholar 

  16. Shi MZ, Xie DY (2014) Biosynthesis and metabolic engineering of anthocyanins in Arabidopsis thaliana. Recent Pat Biotechnol 8:47–60. https://doi.org/10.2174/1872208307666131218123538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang H, Yang L, Ma GX, Xing XD, Yan ML, Zhang YY, Wang QH, Yang BY, Kuang HX, Xu XD (2017) New phenylpropanoid derivatives from the fruits of Xanthium sibiricum and their anti-inflammatory activity. Fitoterapia 117:11–15. https://doi.org/10.1016/j.fitote.2016.12.007

    Article  CAS  PubMed  Google Scholar 

  18. Wan H, Yu C, Han Y, Guo X, Luo L, Pan H, Zheng T, Wang J, Cheng T, Zhang Q (2019) Determination of flavonoids and carotenoids and their contributions to various colors of rose cultivars (Rosa spp.). Front Plant Sci 10:123. https://doi.org/10.3389/fpls.2019.00123

  19. Peng M, Shahzad R, Gul A, Subthain H, Shen S, Lei L, Zheng Z, Zhou J, Lu D, Wang S, Nishawy E, Liu X, Tohge T, Fernie AR, Luo J (2017) Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance. Nat Commun 8:1975. https://doi.org/10.1038/s41467-017-02168-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grunewald S, Marillonnet S, Hause G, Haferkamp I, Neuhaus HE, Veß A, Hollemann T, Vogt T (2020) The tapetal major facilitator NPF2.8 is required for accumulation of flavonol glycosides on the pollen surface in Arabidopsis thaliana. Plant Cell 32:1727–1748. https://doi.org/10.1105/tpc.19.00801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dastmalchi M, Dhaubhadel S (2015) Proteomic insights into synthesis of isoflavonoids in soybean seeds. Proteomics 15:1646–1657. https://doi.org/10.1002/pmic.201400444

    Article  CAS  PubMed  Google Scholar 

  22. Dong NQ, Lin HX (2021) Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. J Integr Plant Biol 63:180–209. https://doi.org/10.1111/jipb.13054

    Article  CAS  PubMed  Google Scholar 

  23. Chen S, Wu F, Li Y, Qian Y, Pan X, Li F, Wang Y, Wu Z, Fu C, Lin H, Yang A (2019) NtMYB4 and NtCHS1 are critical factors in the regulation of flavonoid biosynthesis and are involved in salinity responsiveness. Front Plant Sci 10:178. https://doi.org/10.3389/fpls.2019.00178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yildiztugay E, Ozfidan-Konakci C, Kucukoduk M, Turkan I (2020) Flavonoid naringenin alleviates short-term osmotic and salinity stresses through regulating photosynthetic machinery and chloroplastic antioxidant metabolism in Phaseolus vulgaris. Front Plant Sci 11:682. https://doi.org/10.3389/fpls.2020.00682

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hapeshi A, Benarroch JM, Clarke DJ, Waterfield NR (2019) Iso-propyl stilbene: a life cycle signal? Microbiology (Read) 165:516–526

    Article  CAS  Google Scholar 

  26. Huang DD, Shi G, Jiang Y, Yao C, Zhu C (2020) A review on the potential of Resveratrol in prevention and therapy of diabetes and diabetic complications. Biomed Pharmacother 125:109767

    Article  CAS  PubMed  Google Scholar 

  27. Pan MH, Wu JC, Ho CT, Lai CS (2018) Antiobesity molecular mechanisms of action: resveratrol and pterostilbene. BioFactors 44:50–60

    Article  CAS  PubMed  Google Scholar 

  28. Banik K, Ranaware AM, Harsha C, Nitesh T, Girisa S, Deshpande V, Kunnumakkara AB (2020) Piceatannol: a natural stilbene for the prevention and treatment of cancer. Pharmacol Res 153:104635

    Article  CAS  PubMed  Google Scholar 

  29. Mattio LM, Catinella G, Pinto A, Dallavalle S (2020) Natural and nature-inspired stilbenoids as antiviral agents. Eur J Med Chem 202:112541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tian B, Liu J (2019) Resveratrol: a review of plant sources, synthesis, stability, modification and food application. J Sci Food Agric 100:1392–1404

    Article  PubMed  Google Scholar 

  31. Teka T, Zhang L, Ge X, Li Y, Han L, Yan X (2022) Stilbenes: source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical application—a comprehensive review. Phytochemistry 197:113128

    Article  CAS  PubMed  Google Scholar 

  32. Keylor MH, Matsuura BS, Stephenson CR (2015) Chemistry and biology of resveratrol-derived natural products. Chem Rev 115:8976–9027. https://doi.org/10.1021/cr500689b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blaszczyk A, Sady S, Sielicka-Rózyńska M (2019) The stilbene profile in edible berries. Phytochem Rev 18:37–67. https://doi.org/10.1007/s11101-018-9580-2

    Article  CAS  Google Scholar 

  34. Matos MJ, Santana L, Uriarte EA, Abreu O, Molina E, Yordi EG (2015) Coumarins—an important class of phytochemicals. In: Rao AV, Rao LG (eds) Phytochemicals-isolation, characterisation and role in human health. IntechOpen. https://doi.org/10.5772/59982

  35. Robe K, Izquierdo E, Vignols F, Rouached H, Dubos C (2021) The coumarins: secondary metabolites playing a primary role in plant nutrition and health. Trends Plant Sci 26:248–259. https://doi.org/10.1016/j.tplants.2020.10.008

    Article  CAS  PubMed  Google Scholar 

  36. Stringlis IA, de Jonge R, Pieterse CMJ (2019) The age of coumarins in plant–microbe interactions. Plant Cell Physiol 60:1405–1419. https://doi.org/10.1093/pcp/pcz076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jin CW, You GY, He YF, Tang C, Wu P, Zheng SJ (2007) Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Plant Physiol 144:278–285. https://doi.org/10.1104/pp.107.095794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stassen MJJ, Hsu SH, Pieterse CMJ, Stringlis IA (2021) Coumarin communication along the microbiome–root–shoot axis. Trends Plant Sci 26:169–183. https://doi.org/10.1016/j.tplants.2020.09.008

    Article  CAS  PubMed  Google Scholar 

  39. Verbon EH, Trapet PL, Stringlis IA, Kruijs S, Pieterse BPAHM (2017) Iron and immunity. Annu Rev Phytopathol 55:355–375. https://doi.org/10.1146/annurev-phyto-080516-035537

    Article  CAS  PubMed  Google Scholar 

  40. Yang L, Ding W, Xu Y, Wu D, Li S, Chen J, Guo B (2016) New insights into the antibacterial activity of hydroxycoumarins against Ralstonia solanacearum. Molecules 21:468. https://doi.org/10.3390/molecules21040468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schenke D, Bottcher C, Scheel D (2011) Crosstalk between abiotic ultraviolet-B stress and biotic (flg22) stress signalling in Arabidopsis prevents flavonol accumulation in favor of pathogen defense compound production. Plant Cell Environ 34:1849–1864. https://doi.org/10.1111/j.1365-3040.2011.02381.x

    Article  CAS  PubMed  Google Scholar 

  42. Pastirova A, Repcak M, Eliasova A (2004) Salicylic acid induces changes of coumarin metabolites in Matricaria chamomilla L. Plant Sci 167:819–824. https://doi.org/10.1016/j.plantsci.2004.05.027

    Article  CAS  Google Scholar 

  43. Zhao SS, Li S, Luo ZH, Zhou ZQ, Li N, Wang Y, Yao XS, Gao H (2021) Bioactive phenylpropanoid derivatives from the fruits of Lycium ruthenicum Murr. Bioorg Chem 116:105307. https://doi.org/10.1016/j.bioorg.2021.105307

    Article  CAS  PubMed  Google Scholar 

  44. Labeeuw L, Martone PT, Boucher Y, Case RJ (2015) Ancient origin of the biosynthesis of lignin precursors. Biol Direct 10:23. https://doi.org/10.1186/s13062-015-0052-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Y, Chantreau M, Sibout R, Hawkins S (2013) Plant cell wall lignification and monolignol metabolism. Front Plant Sci 4:220. https://doi.org/10.3389/fpls.2013.00220

    Article  PubMed  PubMed Central  Google Scholar 

  46. Heleno SA, Martins A, Queiroz MJ, Ferreira IC (2015) Bioactivity of phenolic acids: metabolites versus parent compounds: a review. Food Chem 173:501–513. https://doi.org/10.1016/j.foodchem.2014.10.057

    Article  CAS  PubMed  Google Scholar 

  47. Widhalm JR, Dudareva N (2015) A familiar ring to it: biosynthesis of plant benzoic acids. Mol Plant 8:83–97. https://doi.org/10.1016/j.molp.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  48. Rana S, Bhushan S (2016) Apple phenolics as nutraceuticals: assessment, analysis and application. J Food Sci Technol 53:1727–1738. https://doi.org/10.1007/s13197-015-2093-8

    Article  CAS  PubMed  Google Scholar 

  49. Kumar N, Goel N (2019) Phenolic acids: natural versatile molecules with promising therapeutic applications. Biotechnol Rep (Amst) 24:e00370. https://doi.org/10.1016/j.btre.2019.e00370

    Article  PubMed  Google Scholar 

  50. Bhattacharya A, Sood P, Citovsky V (2010) The roles of plant phenolics in defense and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol 11:705–719. https://doi.org/10.1111/j.1364-3703.2010.00625.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xue JS, Zhang B, Zhan H, Lv Y-L, Jia X-L, Wang T, Yang N-Y, Lou Y-X, Zhang Z-B, Hu W-J, Gui J, Cao J, Xu P, Zhou Y, Hu J-F, Li L, Yang Z-N (2020) Phenylpropanoid derivatives are essential components of sporopollenin in vascular plants. Mol Plant 13:1644–1653. https://doi.org/10.1016/j.molp.2020.08.005

    Article  CAS  PubMed  Google Scholar 

  52. Cuendet M, Potterat O, Hostettmann K (2001) Flavonoids and phenylpropanoid derivatives from Campanula barbata. Phytochemistry 56:631–636. https://doi.org/10.1016/s0031-9422(00)00423-4

    Article  CAS  PubMed  Google Scholar 

  53. Jiang N, Doseff AI, Grotewold E (2016) Flavones: from biosynthesis to health benefits. Plants (Basel) 5:27. https://doi.org/10.3390/plants5020027

    Article  CAS  PubMed  Google Scholar 

  54. Guo R, Shang XY, Lv TM, Yao GD, Lin B, Wang XB, Huang XX, Song SJ (2019) Phenylpropanoid derivatives from the fruit of Crataegus pinnatifida Bunge and their distinctive effects on human hepatoma cells. Phytochemistry 164:252–261. https://doi.org/10.1016/j.phytochem.2019.05.005

    Article  CAS  PubMed  Google Scholar 

  55. Ma Q, Wei R, Yang M, Huang X, Zhong G, Sang Z, Dong J, Shu J, Liu J, Zhang R, Yang J, Wang A, Ji T, Su Y (2019) Structures and biological evaluation of phenylpropanoid derivatives from Murraya koenigii. Bioorg Chem 86:159–165. https://doi.org/10.1016/j.bioorg.2019.01.038

    Article  CAS  PubMed  Google Scholar 

  56. Xia Z, Xu TQ, Zhang HX, Chen YM, Zhou GX (2022) New phenylpropanoids from the fruits of Xanthium sibiricum and their anti-inflammatory activity. Nat Prod Res 36:805–813. https://doi.org/10.1080/14786419.2020.1806273

    Article  CAS  PubMed  Google Scholar 

  57. Ramaroson ML, Koutouan C, Helesbeux JJ, Le Clerc V, Hamama L, Geoffriau E, Briard M (2022) Role of phenylpropanoids and flavonoids in plant resistance to pests and diseases. Molecules 27:8371. https://doi.org/10.3390/molecules27238371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yadav V, Wang Z, Wei C, Amo A, Ahmed B, Yang X, Zhang X (2020) Phenylpropanoid pathway engineering: an emerging approach towards plant defense. Pathogens 9:312. https://doi.org/10.3390/pathogens9040312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24:2452. https://doi.org/10.3390/molecules24132452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen S, Wang Q, Lu H, Li J, Yang D, Liu J, Yan C (2019) Phenolic metabolism and related heavy metal tolerance mechanism in Kandelia obovata under Cd and Zn stress. Ecotoxicol Environ Saf 169:134–143. https://doi.org/10.1016/j.ecoenv.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  61. Nichols SN, Hofmann RW, Williams WM (2015) Physiological drought resistance and accumulation of leaf phenolics in white clover interspecific hybrids. Environ Exp Bot 119:40–47. https://doi.org/10.1016/j.envexpbot.2015.05.014

    Article  CAS  Google Scholar 

  62. Bistgani ZE, Hashemi M, DaCosta M, Craker L, Maggi F, Morshedloo MR (2019) Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind Crops Prod 135:311–320. https://doi.org/10.1016/j.indcrop.2019.04.055

    Article  CAS  Google Scholar 

  63. Agati G, Tattini M (2010) Multiple functional roles of flavonoids in photoprotection. New Phytol 186:786–793. https://doi.org/10.1111/j.1469-8137.2010.03269.x

    Article  CAS  PubMed  Google Scholar 

  64. Singh P, Singh A, Choudhary KK (2023) Revisiting the role of phenylpropanoids in plant defense against UV-B stress. Plant Stress 7:100153. https://doi.org/10.1016/j.stress.2023.100143

    Article  CAS  Google Scholar 

  65. Commisso M, Toali K, Strazzer P, Stocchero M, Ceoldo S, Baldan B, Levi M, Guzzo F (2016) Impact of phenylpropanoid compounds on heat stress tolerance in carrot cell cultures. Front Plant Sci 7:1439. https://doi.org/10.3389/fpls.2016.01439

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mahdavi V, Farimani MM, Fathi F, Ghassempour A (2015) A targeted metabolomics approach toward understanding metabolic variations in rice under pesticide stress. Anal Biochem 478:65–72. https://doi.org/10.1016/j.ab.2015.02.021

    Article  CAS  PubMed  Google Scholar 

  67. Neelam K, Duddu V, Anyim N, Neelam J, Lewis S (2021) Pandemics and pre-existing mental illness: a systematic review and meta-analysis. Brain Behav Immun Health 10:100177. https://doi.org/10.1016/j.bbih.2020.100177

    Article  CAS  PubMed  Google Scholar 

  68. Yang W, Xu X, Li Y, Wang Y, Li M, Wang Y, Ding X, Chu Z (2016) Rutin-mediated priming of plant resistance to three bacterial pathogens initiating the early SA signal pathway. PLoS ONE 11:e0146910. https://doi.org/10.1371/journal.pone.0146910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Szatmári Á, Zvara Á, Móricz ÁM, Besenyei E, Szabó E, Ott PG, Puskás LG, Bozsó Z (2014) Pattern triggered immunity (PTI) in tobacco: isolation of activated genes suggests role of the phenylpropanoid pathway in inhibition of bacterial pathogens. PLoS ONE 9:e102869. https://doi.org/10.1371/journal.pone.0102869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hijaz FM, Manthey JA, Folimonova SY, Davis CL, Jones SE, Reyes-De-Corcuera JI (2013) An HPLC-MS characterization of the changes in sweet orange leaf metabolite profile following infection by the bacterial pathogen Candidatus liberibacter asiaticus. PLoS ONE 8:e79485. https://doi.org/10.1371/journal.pone.0079485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Koutouan C, Clerc VL, Baltenweck R, Claudel P, Halter D, Hugueney P, Hamama L, Suel A, Huet S, Merlet MHB, Briard M (2018) Link between carrot leaf secondary metabolites and resistance to Alternaria dauci. Sci Rep 8:13746. https://doi.org/10.1038/s41598-018-31700-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kröner A, Marnet N, Andrivon D, Val F (2012) Nicotiflorin, rutin and chlorogenic acid: phenylpropanoids involved differently in quantitative resistance of potato tubers to biotrophic and necrotrophic pathogens. Plant Physiol Biochem 57:23–31. https://doi.org/10.1016/j.plaphy.2012.05.006

    Article  CAS  PubMed  Google Scholar 

  73. Krcatović E, Rusak G, Bezić N, Krajacić M (2008) Inhibition of tobacco mosaic virus infection by quercetin and vitexin. Acta Virol 52:119–124

    PubMed  Google Scholar 

  74. Tagousop CN, Tamokou JDD, Ekom SE, Ngnokam D, Voutquenne-Nazabadioko L (2018) Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action. BMC Complement Altern Med 18:252. https://doi.org/10.1186/s12906-018-2321-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Farhadi F, Khameneh B, Iranshahi M, Iranshahy M (2019) Antibacterial activity of flavonoids and their structure–activity relationship: an update review. Phyther Res 33:13–40. https://doi.org/10.1002/ptr.6208

    Article  CAS  Google Scholar 

  76. Wang LH, Zeng XA, Wang MS, Brennan CS, Gong D (2018) Modification of membrane properties and fatty acids biosynthesis-related genes in Escherichia coli and Staphylococcus aureus: implications for the antibacterial mechanism of naringenin. Biochim Biophys Acta Biomembr 1860:481–490. https://doi.org/10.1016/j.bbamem.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  77. MacDonald MC, Arivalagan P, Barre DE, MacInnis JA, D’Cunha GB (2016) Rhodotorula glutinis phenylalanine/tyrosine ammonia lyase enzyme catalyzed synthesis of the methyl ester of para-hydroxycinnamic acid and its potential antibacterial activity. Front Microbiol 7:281. https://doi.org/10.3389/fmicb.2016.00281

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cheah H-L, Lim V, Sandai D (2014) Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents. PLoS ONE 9:e95951. https://doi.org/10.1371/journal.pone.0095951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xie Y, Huang B, Yu K, Shi F, Liu T, Xu W (2013) Caffeic acid derivatives: a new type of influenza neuraminidase inhibitors. Bioorg Med Chem Lett 23:3556–3560. https://doi.org/10.1016/j.bmcl.2013.04.033

    Article  CAS  PubMed  Google Scholar 

  80. Hariono M, Abdullah N, Damodaran KV, Kamarulzaman EE, Mohamed N, Hassan SS, Shamsuddin S, Wahab HA (2016) Potential new H1N1 neuraminidase inhibitors from ferulic acid and vanillin: molecular modelling, synthesis and in vitro assay. Sci Rep 6:38692. https://doi.org/10.1038/srep38692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Amano R, Yamashita A, Kasai H, Hori T, Miyasato S, Saito S, Yokoe H, Takahashi K, Tanaka T, Otoguro T (2017) Cinnamic acid derivatives inhibit hepatitis C virus replication via the induction of oxidative stress. Antiviral Res 145:123–130. https://doi.org/10.1016/j.antiviral.2017.07.018

    Article  CAS  PubMed  Google Scholar 

  82. Wu Z-M, Yu Z-J, Cui Z-Q, Peng L-Y, Li H-R, Zhang C-L, Shen H-Q, Yi P-F, Fu B-D (2017) In vitro antiviral efficacy of caffeic acid against canine distemper virus. Microb Pathog 110:240–244. https://doi.org/10.1016/j.micpath.2017.07.006

    Article  CAS  PubMed  Google Scholar 

  83. Rempe CS, Burris KP, Lenaghan SC, Stewart CN (2017) The potential of systems biology to discover antibacterial mechanisms of plant phenolics. Front Microbiol 8:422. https://doi.org/10.3389/fmicb.2017.00422

    Article  PubMed  PubMed Central  Google Scholar 

  84. Borges A, Saavedra MJ, Simões M (2015) Insights on antimicrobial resistance, biofilms and the use of phytochemicals as new antimicrobial agents. Curr Med Chem 22:2590–2614. https://doi.org/10.2174/0929867322666150530210522

    Article  CAS  PubMed  Google Scholar 

  85. Kumazawa S, Kajiya K, Naito A, Saito H, Tuzi S, Tanio M, Suzuki M, Nanjo F, Suzuki E, Nakayama T (2004) Direct evidence of interaction of a green tea polyphenol, epigallocatechin gallate, with lipid bilayers by solid-state nuclear magnetic resonance. Biosci Biotechnol Biochem 68:1743–1747. https://doi.org/10.1271/bbb.68.1743

    Article  CAS  PubMed  Google Scholar 

  86. Zhang L, Kong Y, Wu D, Zhang H, Wu J, Chen J, Ding J, Hu L, Jiang H, Shen X (2008) Three flavonoids targeting the β-hydroxyacyl-acyl carrier protein dehydratase from Helicobacter pylori: crystal structure characterization with enzymatic inhibition assay. Protein Sci 17:1971–1978. https://doi.org/10.1110/ps.036186.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shakya T, Stogios PJ, Waglechner N, Evdokimova E, Ejim L, Blanchard JE, McArthur AG, Savchenko A, Wright GD (2011) A small molecule discrimination map of the antibiotic resistance kinome. Chem Biol 18:1591–1601. https://doi.org/10.1016/j.chembiol.2011.10.018

    Article  CAS  PubMed  Google Scholar 

  88. Hemaiswarya S, Doble M (2010) Synergistic interaction of phenylpropanoids with antibiotics against bacteria. J Med Microbiol 59:1469–1476. https://doi.org/10.1099/jmm.0.022426-0

    Article  CAS  PubMed  Google Scholar 

  89. Oh E, Jeon B (2015) Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds. Front Microbiol 6:1129. https://doi.org/10.3389/fmicb.2015.01129

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Vicerrectoría de Investigación y Estudios de Posgrado (VIEP) de la Benemérita Universidad Autónoma de Puebla (Puebla, Mexico) [100518932-2023] is acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Contributions

AO: Writing—review & editing. ES: Supervision, Writing—review & editing.

Corresponding author

Correspondence to Estibaliz Sansinenea.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz, A., Sansinenea, E. Phenylpropanoid Derivatives and Their Role in Plants’ Health and as antimicrobials. Curr Microbiol 80, 380 (2023). https://doi.org/10.1007/s00284-023-03502-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03502-x

Navigation