Skip to main content

Advertisement

Log in

A Potential Role for Gut Microbes in Mediating Effects of Omega-3 Fatty Acids in Inflammatory Bowel Diseases: A Comprehensive Review

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have been associated with several inflammatory conditions, including inflammatory bowel diseases (IBDs), and found to have an impact on gut microbiota. In fact, some randomized controlled studies suggest benefits to IBD patients, but others do not. Our aim was to review recent evidence on the effects of omega-3 on IBD and establish the contribution of the gut microbiome. Omega-3 mediate anti-inflammatory effects in IBD through various mechanisms, including suppression of NLR family pyrin domain-containing 3 (NLRP3) inflammasome, Toll-like receptor-4 (TLR4), and nucleotide-binding oligomerization domain 2 (NOD2) signaling; this results in the repression of the nuclear factor-kappa B (Nf-kB) pathway and the secretion of pro-inflammatory cytokines. Omega-3 can also affect gut microbiota and revert the bacterial community to patterns associated with healthy status by increasing short-chain fatty acid (SCFA)-producing bacteria and enhancing the mucosal gut barrier, thus promoting homeostasis. The combination of these immunoregulatory effects and anti-inflammation properties with the promotion of a balanced gut microbiome environment could suggest that omega-3 might benefit IBD patients. Considering the microbiota of IBD patients while using omega-3 might predict and improve omega-3 effectiveness. Combining omega-3 with bacteria-altering therapy, such as probiotics and fecal microbiota transplantation, may further enhance its efficacy; however, further studies are required to elucidate mechanisms and potential preventive or treatment roles of omega-3 in IBD.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Fabian CJ, Kimler BF, and Hursting SD. Omega-3 fatty acids for breast cancer prevention and survivorship. Breast cancer research. 2015 Dec;17(1):1–1

Fig. 2

Similar content being viewed by others

Abbreviations

ALA:

α-Linolenic acid

AA:

Arachidonic acid

CD:

Crohn disease

COX:

Cyclooxygenase

CYP:

Cytochrome P450

DHA:

Docosahexaenoic acid

DPA:

Docosapentanoic acid

EPA:

Eicosapentaenoic acid

FMT:

Fecal microbiota transplantation

GPR120:

G protein-coupled receptor 120

GI:

Gastrointestinal

GF:

Germ-free

HETEs:

Hydroxy eicosatetraenoic acids

IBDs:

Inflammatory bowel diseases

IL:

Interleukin

LT:

Leukotrienes

LA:

Linoleic acid

LOX:

Lipoxygenase

NGS:

Next-generation sequencing

NLRP3:

NLR family pyrin domain-containing 3

NF-KB:

Nuclear factor-kappa B

NOD2:

Nucleotide-binding oligomerization domain 2

NLRs:

Nucleotide-binding oligomerization domain-like receptors

ω − 3:

Omega-3

ω − 6:

Omega-6

PBMCs:

Peripheral blood mononuclear cells

PPAR γ:

Peroxisome proliferator-activated receptor γ

PUFAs:

Polyunsaturated fatty acids

PG:

Prostaglandins

Tregs:

Regulatory T cells

RA:

Rheumatoid arthritis

SCFAs:

Short-chain fatty acids

Th1:

T helper 1

Th17:

T helper 17

TB:

Thromboxane

TLR4:

Toll-like receptor 4

UC:

Ulcerative colitis

References:

  1. Wu D, Lewis ED, Pae M et al (2019) Nutritional modulation of immune function: analysis of evidence, mechanisms, and clinical relevance. Front Immunol 9:3160

    Article  PubMed  PubMed Central  Google Scholar 

  2. Calder PC (2017) Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans 45(5):1105–1115

    Article  CAS  PubMed  Google Scholar 

  3. Patterson E, Wall R, Fitzgerald G et al (2012) Health implications of high dietary omega-6 polyunsaturated fatty acids. J Nutr Metab 2012:1

    Article  Google Scholar 

  4. Kashiwagi S, Huang PL (2012) Dietary Supplements and Cardiovascular Disease: What is the Evidence and What Should We Recommend? In: Gasparyan AY (ed) ) Cardiovascular Risk Factors. InTech, Houston

    Google Scholar 

  5. Russo GL (2009) Dietary n− 6 and n− 3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention. Biochem Pharmacol 77(6):937–946

    Article  CAS  PubMed  Google Scholar 

  6. Ramos GP, Papadakis KA (2019) Mechanisms of disease: inflammatory bowel diseases. Mayo Clin Proc 94:155

    Article  CAS  PubMed  Google Scholar 

  7. Molodecky NA, Soon S, Rabi DM et al (2012) Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142(1):46–54

    Article  PubMed  Google Scholar 

  8. Scaioli E, Liverani E, Belluzzi A (2017) The imbalance between n-6/n-3 polyunsaturated fatty acids and inflammatory bowel disease: a comprehensive review and future therapeutic perspectives. Int J Mol Sci 18(12):2619

    Article  PubMed  PubMed Central  Google Scholar 

  9. Damas OM, Jahann DA, Reznik R et al (2013) Phenotypic manifestations of inflammatory bowel disease differ between Hispanics and non-Hispanic whites: results of a large cohort study. Am J College Gastroenterol 108(2):231–239

    Article  Google Scholar 

  10. De Filippo C, Cavalieri D, Di Paola M et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci 107(33):14691–14696

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brasky TM, Till C, White E et al (2011) Serum phospholipid fatty acids and prostate cancer risk: results from the prostate cancer prevention trial. Am J Epidemiol 173(12):1429–1439

    Article  PubMed  PubMed Central  Google Scholar 

  12. Massironi S, Viganò C, Palermo A et al (2023) Inflammation and malnutrition in inflammatory bowel disease. Lancet Gastroenterol Hepatol 8:579

    Article  PubMed  Google Scholar 

  13. Massironi S, Rossi RE, Cavalcoli FA et al (2013) Nutritional deficiencies in inflammatory bowel disease: therapeutic approaches. Clin Nutr 32(6):904–910

    Article  CAS  PubMed  Google Scholar 

  14. Iddrisu I, Monteagudo-Mera A, Poveda C et al (2021) Malnutrition and gut microbiota in children. Nutrients 13(8):2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Belluzzi A, Brignola C, Campieri M et al (1996) Effect of an enteric-coated fish-oil preparation on relapses in Crohn’s disease. N Engl J Med 334(24):1557–1560

    Article  CAS  PubMed  Google Scholar 

  16. Ananthakrishnan AN, Khalili H, Konijeti GG et al (2014) Long-term intake of dietary fat and risk of ulcerative colitis and Crohn’s disease. Gut 63(5):776–784

    Article  CAS  PubMed  Google Scholar 

  17. Lorenz-Meyer H, Bauer P, Nicolay C et al (1996) Omega-3 fatty acids and low carbohydrate diet for maintenance of remission in Crohn’s disease: a randomized controlled multicenter trial. Scand J Gastroenterol 31(8):778–785

    Article  CAS  PubMed  Google Scholar 

  18. Watson H, Mitra S, Croden FC et al (2018) A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut 67(11):1974–1983

    Article  CAS  PubMed  Google Scholar 

  19. Costantini L, Molinari R, Farinon B et al (2017) Impact of omega-3 fatty acids on the gut microbiota. Int J Mol Sci 18(12):2645

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mullin GE, Limketkai BN, Parian AM (2021) Fish oil for inflammatory bowel disease: panacea or placebo? Gastroenterol Clin 50(1):169–182

    Article  Google Scholar 

  21. Gammone MA, Riccioni G, Parrinello G et al (2019) Omega-3 polyunsaturated fatty acids: benefits and endpoints in sport. Nutrients 11(1):46

    Article  CAS  Google Scholar 

  22. Marton LT, R.d.A. Goulart, A.C.A.d. Carvalho, et al (2019) Omega fatty acids and inflammatory bowel diseases: an overview. Int J Mol Sci 20(19):4851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lunn J, Theobald H (2006) The health effects of dietary unsaturated fatty acids. Nutr Bull 31(3):178–224

    Article  Google Scholar 

  24. D’Orazio N, Gemello E, Gammone MA et al (2012) Fucoxantin: A treasure from the sea. Mar Drugs 10(3):604–616

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang M, Ahrné S, Jeppsson B et al (2005) Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol 54(2):219–231

    Article  CAS  PubMed  Google Scholar 

  26. Consortium, H.M.P. (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207

    Article  Google Scholar 

  27. Gensollen T, Iyer SS, Kasper DL et al (2016) How colonization by microbiota in early life shapes the immune system. Science 352(6285):539–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moles L, Otaegui D (2020) The impact of diet on microbiota evolution and human health. Is diet an adequate tool for microbiota modulation? Nutrients 12(6):1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lozupone CA, Stombaugh JI, Gordon JI et al (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489(7415):220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat rev immunol 9(5):313–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Litvak Y, Byndloss MX, Bäumler AJ (2018) Colonocyte metabolism shapes the gut microbiota. Science. https://doi.org/10.1126/science.aat9076

    Article  PubMed  PubMed Central  Google Scholar 

  33. Den Besten G, Van Eunen K, Groen AK et al (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54(9):2325–2340

    Article  Google Scholar 

  34. Skutches CL, Sigler MH, Teehan BP et al (1983) Contribution of dialysate acetate to energy metabolism: Metabolic implications. Kidney Int 23(1):57–63

    Article  CAS  PubMed  Google Scholar 

  35. Statovci D, Aguilera M, MacSharry J et al (2017) The impact of western diet and nutrients on the microbiota and immune response at mucosal interfaces. Front Immunol 8:838

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cammarota G, Ianiro G, Bibbo S et al (2014) Gut microbiota modulation: probiotics, antibiotics or fecal microbiota transplantation? Intern Emerg Med 9(4):365–373

    Article  PubMed  Google Scholar 

  37. Mentella MC, Scaldaferri F, Pizzoferrato M et al (2020) Nutrition, IBD and gut microbiota: a review. Nutrients 12(4):944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Michail S, Durbin M, Turner D et al (2012) Alterations in the gut microbiome of children with severe ulcerative colitis. Inflamm Bowel Dis 18(10):1799–1808

    Article  PubMed  Google Scholar 

  39. Armstrong H, Alipour M, Valcheva R et al (2019) Host immunoglobulin G selectively identifies pathobionts in pediatric inflammatory bowel diseases. Microbiome 7(1):1–17

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lane ER, Zisman TL, Suskind DL (2017) The microbiota in inflammatory bowel disease: current and therapeutic insights. J Inflamm Res 10:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Narula N, Kassam Z, Yuan Y et al (2017) Systematic review and meta-analysis: fecal microbiota transplantation for treatment of active ulcerative colitis. Inflamm Bowel Dis 23(10):1702–1709

    Article  PubMed  Google Scholar 

  42. Levine A, Kori M, Kierkus J et al (2019) Azithromycin and metronidazole versus metronidazole-based therapy for the induction of remission in mild to moderate paediatric Crohn’s disease: a randomised controlled trial. Gut 68(2):239–247

    Article  CAS  PubMed  Google Scholar 

  43. Kennedy R, Hoper M, Deodhar K et al (2000) Interleukin 10-deficient colitis: new similarities to human inflammatory bowel disease. Br J Surg 87(10):1346–1351

    Article  CAS  PubMed  Google Scholar 

  44. Saleh M, Trinchieri G (2011) Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol 11(1):9–20

    Article  CAS  PubMed  Google Scholar 

  45. Mühlbauer M, Cheely AW, Yenugu S et al (2008) Regulation and functional impact of lipopolysaccharide induced Nod2 gene expression in the murine epididymal epithelial cell line PC1. Immunology 124(2):256–264

    Article  PubMed  PubMed Central  Google Scholar 

  46. Leung CH, Lam W, Ma DL et al (2009) Butyrate mediates nucleotide-binding and oligomerisation domain (NOD) 2-dependent mucosal immune responses against peptidoglycan. Eur J Immunol 39(12):3529–3537

    Article  CAS  PubMed  Google Scholar 

  47. Rosenstiel P, Fantini M, Bräutigam K et al (2003) TNF-α and IFN-γ regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology 124(4):1001–1009

    Article  CAS  PubMed  Google Scholar 

  48. Park SC, Jeen YT (2019) Genetic studies of inflammatory bowel disease-focusing on Asian patients. Cells 8(5):404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schumert R, Towner J, Zipser RD (1988) Role of eicosanoids in human and experimental colitis. Dig Dis Sci 33(3):58S-64S

    Article  CAS  PubMed  Google Scholar 

  50. Liu Y, Chen F, Odle J et al (2012) Fish oil enhances intestinal integrity and inhibits TLR4 and NOD2 signaling pathways in weaned pigs after LPS challenge. J Nutr 142(11):2017–2024

    Article  CAS  PubMed  Google Scholar 

  51. Calder PC (2009) Fatty acids and immune function: relevance to inflammatory bowel diseases. Int Rev Immunol 28(6):506–534

    Article  CAS  PubMed  Google Scholar 

  52. Sley EG, Rosen EM, T.J. vant Erve, et al (2020) Omega-3 fatty acid supplement use and oxidative stress levels in pregnancy. PLoS ONE. https://doi.org/10.1371/journal.pone.0240244

    Article  PubMed  PubMed Central  Google Scholar 

  53. Parolini C (2019) Effects of fish n-3 PUFAs on intestinal microbiota and immune system. Mar Drugs 17(6):374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kromhout D, Yasuda S, Geleijnse JM et al (2012) Fish oil and omega-3 fatty acids in cardiovascular disease: do they really work? Eur Heart J 33(4):436–443

    Article  CAS  PubMed  Google Scholar 

  55. Im D-S (2016) Functions of omega-3 fatty acids and FFA4 (GPR120) in macrophages. Eur J Pharmacol 785:36–43

    Article  CAS  PubMed  Google Scholar 

  56. Calder PC (2015) Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochem Biophys Acta 1851(4):469–484

    CAS  PubMed  Google Scholar 

  57. Calder PC (2013) Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol 75(3):645–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Serhan CN, Arita M, Hong S et al (2004) Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids 39(11):1125–1132

    Article  CAS  PubMed  Google Scholar 

  59. Abdolmaleki F, Kovanen PT, Mardani R et al (2020) Resolvins: emerging players in autoimmune and inflammatory diseases. Clin Rev Allergy Immunol 58(1):82–91

    Article  CAS  PubMed  Google Scholar 

  60. Watanabe Y, Tatsuno I (2017) Omega-3 polyunsaturated fatty acids for cardiovascular diseases: present, past and future. Expert Rev Clin Pharmacol 10(8):865–873

    Article  CAS  PubMed  Google Scholar 

  61. Merendino N, Costantini L, Manzi L et al (2013) Dietary ω-3 polyunsaturated fatty acid DHA: a potential adjuvant in the treatment of cancer. BioMed Res Int 2013:1–11

    Article  Google Scholar 

  62. Ghosh S, DeCoffe D, Brown K et al (2013) Fish oil attenuates omega-6 polyunsaturated fatty acid-induced dysbiosis and infectious colitis but impairs LPS dephosphorylation activity causing sepsis. PLoS ONE 8(2):e55468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Matsunaga H, Hokari R, Kurihara C et al (2008) Omega-3 fatty acids exacerbate DSS-induced colitis through decreased adiponectin in colonic subepithelial myofibroblasts. Inflamm Bowel Dis 14(10):1348–1357

    Article  PubMed  Google Scholar 

  64. Hegazi RA, Saad RS, Mady H et al (2006) Dietary fatty acids modulate chronic colitis, colitis-associated colon neoplasia and COX-2 expression in IL-10 knockout mice. Nutrition 22(3):275–282

    Article  CAS  PubMed  Google Scholar 

  65. Fenton JI, Hord NG, Ghosh S et al (2013) Long chain omega-3 fatty acid immunomodulation and the potential for adverse health outcomes. Prostaglandins Leukot Essent Fatty Acids 89(6):379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Scaioli E, Sartini A, Bellanova M et al (2018) Eicosapentaenoic acid reduces fecal levels of calprotectin and prevents relapse in patients with ulcerative colitis. Clin Gastroenterol Hepatol 16(8):1268–1275

    Article  CAS  PubMed  Google Scholar 

  67. Fu Y, Wang Y, Gao H et al (2021) Associations among dietary omega-3 polyunsaturated fatty acids, the gut microbiota, and intestinal immunity. Mediators Inflamm 2021:1–11

    Google Scholar 

  68. Babcock TA, Kurland A, Helton WS et al (2003) Inhibition of activator protein-1 transcription factor activation by omega-3 fatty acid modulation of mitogen-activated protein kinase signaling kinases. JPEN 27(3):176–180

    Article  CAS  Google Scholar 

  69. Kim JY, Lim K, Kim KH et al (2018) N-3 polyunsaturated fatty acids restore Th17 and Treg balance in collagen antibody-induced arthritis. PLoS ONE 13(3):e0194331

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yan Y, Jiang W, Spinetti T et al (2013) Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 38(6):1154–1163

    Article  CAS  PubMed  Google Scholar 

  71. Wen H, Gris D, Lei Y et al (2011) Fatty acid–induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12(5):408–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ibrahim A, Mbodji K, Hassan A et al (2011) Anti-inflammatory and anti-angiogenic effect of long chain n-3 polyunsaturated fatty acids in intestinal microvascular endothelium. Clin Nutr 30(5):678–687

    Article  CAS  PubMed  Google Scholar 

  73. Lee TH, Hoover RL, Williams JD et al (1985) Effect of dietary enrichment with eicosapentaenoic and docosahexaenoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function. N Engl J Med 312(19):1217–1224

    Article  CAS  PubMed  Google Scholar 

  74. Shapiro A, Wu D, Meydani S (1993) Eicosanoids derived from arachidonic and eicosapentaenoic acids inhibit T cell proliferative response. Prostaglandins 45(3):229–240

    Article  CAS  PubMed  Google Scholar 

  75. Trebble TM, Wootton SA, Miles EA et al (2003) Prostaglandin E2 production and T cell function after fish-oil supplementation: response to antioxidant cosupplementation. Am J Clin Nutr 78(3):376–382

    Article  CAS  PubMed  Google Scholar 

  76. Stenson WF, Cort D, Rodgers J et al (1992) Dietary supplementation with fish oil in ulcerative colitis. Ann Intern Med 116(8):609–614

    Article  CAS  PubMed  Google Scholar 

  77. Hawthorne A, Daneshmend T, Hawkey C et al (1992) Treatment of ulcerative colitis with fish oil supplementation: a prospective 12 month randomised controlled trial. Gut 33(7):922–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Machiels K, Joossens M, Sabino J et al (2014) A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63(8):1275–1283

    Article  CAS  PubMed  Google Scholar 

  79. Danilova N, Abdulkhakov S, Grigoryeva T et al (2019) Markers of dysbiosis in patients with ulcerative colitis and Crohn’s disease. Ter Arkh 91(4):13–20

    Google Scholar 

  80. Zhang Y, Zhang B, Dong L et al (2019) Potential of omega-3 polyunsaturated fatty acids in managing chemotherapy-or radiotherapy-related intestinal microbial dysbiosis. Adv Nutr 10(1):133–147

    Article  PubMed  Google Scholar 

  81. Aberra FN (2008) Omega-3 fatty acids for maintenance of remission of Crohn’s disease. Gastroenterology 135(3):1005–1006

    Article  PubMed  Google Scholar 

  82. Feagan BG, Sandborn WJ, Mittmann U et al (2008) Omega-3 free fatty acids for the maintenance of remission in Crohn disease: the EPIC Randomized Controlled Trials. JAMA 299(14):1690–1697

    Article  CAS  PubMed  Google Scholar 

  83. Plotnikoff GA (2008) Fatty acid and vitamin D status in the EPIC trials of Crohn disease treatment. JAMA 300(6):650–650

    Article  CAS  PubMed  Google Scholar 

  84. Feagan BG (2008) Fatty acid and vitamin D status in the EPIC trials of crohn disease treatment—reply. JAMA 300(6):650–650

    Article  CAS  Google Scholar 

  85. Lorenz R, Weber P, Szimnau P et al (1989) Supplementation with n-3 fatty acids from fish oil in chronic inflammatory bowel disease—a randomized, placebo-controlled, double-blind cross-over trial. J Intern Med 225(S731):225–232

    Article  Google Scholar 

  86. Greenfield S, Green A, Teare J et al (1993) A randomized controlled study of evening primrose oil and fish oil in ulcerative colitis. Aliment Pharmacol Ther 7(2):159–166

    Article  CAS  PubMed  Google Scholar 

  87. Belluzzi A, Brignola C, Campieri M et al (1994) Effects of new fish oil derivative on fatty acid phospholipid-membrane pattern in a group of Crohn’s disease patients. Dig Dis Sci 39:2589–2594

    Article  CAS  PubMed  Google Scholar 

  88. Loeschke K, Ueberschaer B, Pietsch A et al (1996) n-3 fatty acids only delay early relapse of ulcerative colitis in remission. Dig Dis Sci 41:2087–2094

    Article  CAS  PubMed  Google Scholar 

  89. Mantzaris G, Archavlis E, Zografos C et al (1996) A prospective, randomized, placebo-controlled study of fish oil in ulcerative colitis. Hellenic J Gastroenterol 9:138–141

    Google Scholar 

  90. Uchiyama K, Nakamura M, Odahara S et al (2010) N-3 polyunsaturated fatty acid diet therapy for patients with inflammatory bowel disease. Inflamm Bowel Dis 16(10):1696–1707

    Article  PubMed  Google Scholar 

  91. Chan S, Luben R, Olsen A et al (2014) Association between high dietary intake of the n− 3 polyunsaturated fatty acid docosahexaenoic acid and reduced risk of Crohn’s disease. Aliment Pharmacol Ther 39(8):834–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Scaioli E, Cardamone C, Liverani E et al (2015) The pharmacokinetic profile of a new gastroresistant capsule preparation of eicosapentaenoic acid as the free fatty acid. BioMed Res Int 2015:1–8

    Article  Google Scholar 

  93. Prossomariti A, Scaioli E, Piazzi G et al (2017) Short-term treatment with eicosapentaenoic acid improves inflammation and affects colonic differentiation markers and microbiota in patients with ulcerative colitis. Sci Rep 7(1):7458

    Article  PubMed  PubMed Central  Google Scholar 

  94. Huang X, Li Y, Zhuang P et al (2022) Habitual fish oil supplementation and risk of incident inflammatory bowel diseases: A prospective population-based study. Front Nutr. https://doi.org/10.3389/fnut.2022.905162

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors declare that there is no conflict of interest.

Funding

This work was supported by a student award to NAF from the Women and Children’s Health Research Institute at University of Alberta; The Wine lab is funded by operating grants including the Canadian Institutes of Health Research (CIHR) and Weston Family Foundation. The authors declare there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Contributions

NAF researched, wrote the manuscript, and designed the figures; MBJ revised the article; EW supervised the work and revised the article.

Corresponding author

Correspondence to Eytan Wine.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arjomand Fard, N., Bording-Jorgensen, M. & Wine, E. A Potential Role for Gut Microbes in Mediating Effects of Omega-3 Fatty Acids in Inflammatory Bowel Diseases: A Comprehensive Review. Curr Microbiol 80, 363 (2023). https://doi.org/10.1007/s00284-023-03482-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03482-y

Navigation