Skip to main content
Log in

Beta-lactam Resistance Profile among Klebsiella pneumoniae Clinical Isolates from Alexandria, Egypt

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Klebsiella pneumoniae is a major drug-resistant human pathogen accountable for a wide range of infections. In this cross-sectional study, we aimed to determine the phenotypic and genotypic features of β-lactamase-producing K. pneumoniae clinical isolates from Alexandria, Egypt. A total of 50 nonduplicated clinical isolates of K. pneumoniae were obtained from various specimens. They were identified biochemically and by biotyping using mass spectrometry. For molecular characterization, plasmid profile analysis was performed. Screening for extended spectrum β-lactamases (ESBLs), carbapenemases and AmpC production was carried out phenotypically and genotypically. Correlation analysis was performed to assess the relationship between phenotype, genotype and resistance patterns among the studied isolates. The dendrogram demonstrated 38 distinct plasmid profiles among 62% of our isolates. According to antimicrobial susceptibility testing, 90% of isolates were multi/extensive-drug resistant. Nineteen out of 50 (38%) were resistant to cefoxitin, while only 10 (20%) were resistant to imipenem. All isolates were susceptible to colistin. Phenotypically, ESBL producers (78%) were the most common, followed by carbapenemase producers (24%). Genotypically, the most common ESBL gene was blaSHV (90%), followed by blaCTX-Mu (74%), while the most common carbapenemase genes were blaNDM (56%) and blaOXA-48 (54%). No blaKPC or blaIMP were detected. Plasmid-mediated AmpC resistance was confirmed in only two out of 19 cefoxitin-resistant isolates. Both the blaNDM and blaOXA.48 genes were significantly positive correlated (rho = 0.56, p = 0.004). Absence of blaKPC among carbapenem resistant K. pneumoniae isolates in Alexandria, Egypt. AmpC production is not the main factor behind the resistance to cefoxitin among our isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the results and findings of this study are available within the manuscript.

Code Availability

Not applicable.

References

  1. Diekema DJ, Hsueh PR, Mendes RE, Pfaller MA, Rolston KV, Sader HS et al (2019) The Microbiology of bloodstream infection: 20-Year trends from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother. https://doi.org/10.1128/aac.00355-19

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kobayashi K, Yamamoto S, Takahashi S, Ishikawa K, Yasuda M, Wada K et al (2020) The third national Japanese antimicrobial susceptibility pattern surveillance program: bacterial isolates from complicated urinary tract infection patients. J Infect Chemother 26(5):418–428. https://doi.org/10.1016/j.jiac.2020.01.004

    Article  CAS  PubMed  Google Scholar 

  3. Alfouzan W, Dhar R, Abdo NM, Alali WQ, Rabaan AA (2021) Epidemiology and microbiological profile of common healthcare associated infections among patients in the intensive care unit of a general hospital in kuwait: a retrospective observational study. J Epidemiol Glob Health 11(3):302–309. https://doi.org/10.2991/jegh.k.210524.001

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL et al (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18(3):318–327. https://doi.org/10.1016/s1473-3099(17)30753-3

    Article  PubMed  Google Scholar 

  5. Hamam S, Sakr A, Zahran W, El Kholy R, Kasemy Z, Ibrahem R et al (2021) Health care-associated infections at an Egyptian tertiary care hospital: a 2-year prospective study. Menoufia Med J 34(2):514–520. https://doi.org/10.4103/mmj.mmj_455_20

    Article  Google Scholar 

  6. Hassan R, El-Gilany AH, Abd Elaal AM, El-Mashad N, Azim DA (2020) An overview of healthcare-associated infections in a tertiary care hospital in Egypt. Infect Prev Pract. 2(3):100059. https://doi.org/10.1016/j.infpip.2020.100059

    Article  PubMed  PubMed Central  Google Scholar 

  7. El-Kholy AA, Girgis SA, Shetta MAF, Abdel-Hamid DH, Elmanakhly AR (2020) Molecular characterization of multidrug-resistant gram-negative pathogens in three tertiary hospitals in Cairo. Egypt Eur J Clin Microbiol Infect Dis 39(5):987–992. https://doi.org/10.1007/s10096-020-03812-z

    Article  CAS  PubMed  Google Scholar 

  8. Lai CC, Yu WL (2021) Klebsiella pneumoniae harboring carbapenemase genes in Taiwan: its evolution over 20 years, 1998–2019. Int J Antimicrob Agents. 58(1):106354. https://doi.org/10.1016/j.ijantimicag.2021.106354

    Article  CAS  PubMed  Google Scholar 

  9. Bush K, Jacoby GA (2010) Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 54(3):969–976. https://doi.org/10.1128/aac.01009-09

    Article  CAS  PubMed  Google Scholar 

  10. Ambler RP (1980) The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci 289(1036):321–331. https://doi.org/10.1098/rstb.1980.0049

    Article  CAS  PubMed  Google Scholar 

  11. Branka B, Sanda S (2018) Carbapenemases. In: Madhusmita M (ed) Growing and Handling of Bacterial Cultures. Rijeka, IntechOpen, p 3

    Google Scholar 

  12. Ma Y, Bao C, Liu J, Hao X, Cao J, Ye L et al (2018) Microbiological characterization of Klebsiella pneumoniae isolates causing bloodstream infections from five tertiary hospitals in Beijing. China J Glob Antimicrob Resist 12:162–166. https://doi.org/10.1016/j.jgar.2017.10.002

    Article  PubMed  Google Scholar 

  13. Peirano G, Sang JH, Pitondo-Silva A, Laupland KB, Pitout JD (2012) Molecular epidemiology of extended-spectrum-β-lactamase-producing Klebsiella pneumoniae over a 10 year period in Calgary. Canada J Antimicrob Chemother 67(5):1114–1120. https://doi.org/10.1093/jac/dks026

    Article  CAS  PubMed  Google Scholar 

  14. Hammoudi Halat D, Ayoub MC (2020) The current burden of carbapenemases: review of significant properties and dissemination among gram-negative bacteria. Antibiotics 9(4):186

    Article  PubMed  PubMed Central  Google Scholar 

  15. Abdelaziz MO, Bonura C, Aleo A, Fasciana T, Mammina C (2013) NDM-1- and OXA-163-producing Klebsiella pneumoniae isolates in Cairo, Egypt, 2012. J Glob Antimicrob Resist 1(4):213–215. https://doi.org/10.1016/j.jgar.2013.06.003

    Article  PubMed  Google Scholar 

  16. Helal SF, El-Rachidi NG, AbdulRahman EM, Hassan DM (2014) The presence of blaKPC-mediated resistance in Enterobacteriaceae in Cairo University hospitals in Egypt and its correlation with in vitro carbapenem susceptibility. J Chemother 26(2):125–128. https://doi.org/10.1179/1973947813y.0000000099

    Article  CAS  PubMed  Google Scholar 

  17. Poirel L, Abdelaziz MO, Bernabeu S, Nordmann P (2013) Occurrence of OXA-48 and VIM-1 carbapenemase-producing Enterobacteriaceae in Egypt. Int J Antimicrob Agents 41(1):90–91. https://doi.org/10.1016/j.ijantimicag.2012.08.015

    Article  CAS  PubMed  Google Scholar 

  18. Altayb HN, Elbadawi HS, Alzahrani FA, Baothman O, Kazmi I, Nadeem MS et al (2022) Co-occurrence of β-lactam and aminoglycoside resistance determinants among clinical and environmental isolates of Klebsiella pneumoniae and Escherichia coli: a genomic approach. Pharmaceuticals (Basel, Switzerland). https://doi.org/10.3390/ph15081011

    Article  PubMed  Google Scholar 

  19. Salah FD, Soubeiga ST, Ouattara AK, Sadji AY, Metuor-Dabire A, Obiri-Yeboah D et al (2019) Distribution of quinolone resistance gene (qnr) in ESBL-producing Escherichia coli and Klebsiella spp. in Lomé Togo. Antimicrob Resist Infect Control 8:104. https://doi.org/10.1186/s13756-019-0552-0

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wassef M, Behiry I, Younan M, El Guindy N, Mostafa S, Abada E (2014) Genotypic identification of AmpC β-lactamases production in gram-negative Bacilli Isolates. Jundishapur J Microbiol 7(1):e8556. https://doi.org/10.5812/jjm.8556

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jacoby GA (2009) AmpC beta-lactamases. Clin Microbiol Rev 22(1):161–182. https://doi.org/10.1128/cmr.00036-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tille P. (2015) Bailey & Scott's diagnostic microbiology-E-Book: Elsevier Health Sciences

  23. Singhal N, Kumar M, Kanaujia PK, Virdi JS (2015) MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 6:791. https://doi.org/10.3389/fmicb.2015.00791

    Article  PubMed  PubMed Central  Google Scholar 

  24. Perrier X, Jacquemoud-Collet, J.P. DARwin (2006) software [Available from: http://darwin.cirad.fr/.

  25. Clinical and Laboratory Standards Institute (CLSI). (2020) Performance standards for antimicrobial susceptibility testing, 30th informational supplement M100-S30

  26. Drieux L, Brossier F, Sougakoff W, Jarlier V (2008) Phenotypic detection of extended-spectrum β-lactamase production in Enterobacteriaceae: review and bench guide. Clin Microbiol Infect 14:90–103. https://doi.org/10.1111/j.1469-0691.2007.01846.x

    Article  CAS  PubMed  Google Scholar 

  27. Jarlier V, Nicolas MH, Fournier G, Philippon A (1988) Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis 10(4):867–878. https://doi.org/10.1093/clinids/10.4.867

    Article  CAS  PubMed  Google Scholar 

  28. Huang TD, Bogaerts P, Berhin C, Guisset A, Glupczynski Y (2010) Evaluation of Brilliance ESBL agar, a novel chromogenic medium for detection of extended-spectrum-beta- lactamase-producing Enterobacteriaceae. J Clin Microbiol 48(6):2091–2096. https://doi.org/10.1128/jcm.02342-09

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jacob ME, Keelara S, Aidara-Kane A, Matheu Alvarez JR, Fedorka-Cray PJ (2020) Optimizing a screening protocol for potential extended-spectrum β-lactamase Escherichia coli on MacConkey agar for use in a global surveillance program. J Clin Microbiol. https://doi.org/10.1128/jcm.01039-19

    Article  PubMed  PubMed Central  Google Scholar 

  30. Amjad A, Mirza I, Abbasi S, Farwa U, Malik N, Zia F (2011) Modified hodge test: a simple and effective test for detection of carbapenemase production. Iran J Microbiol 3(4):189–193

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Carrër A, Fortineau N, Nordmann P (2010) Use of ChromID extended-spectrum beta-lactamase medium for detecting carbapenemase-producing Enterobacteriaceae. J Clin Microbiol 48(5):1913–1914. https://doi.org/10.1128/jcm.02277-09

    Article  PubMed  PubMed Central  Google Scholar 

  32. Giske CG, Gezelius L, Samuelsen Ø, Warner M, Sundsfjord A, Woodford N (2011) A sensitive and specific phenotypic assay for detection of metallo-β-lactamases and KPC in Klebsiella pneumoniae with the use of meropenem disks supplemented with aminophenylboronic acid, dipicolinic acid and cloxacillin. Clin Microbiol Infect 17(4):552–556. https://doi.org/10.1111/j.1469-0691.2010.03294.x

    Article  CAS  PubMed  Google Scholar 

  33. Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y (2002) Imipenem-EDTA disk method for differentiation of metallo-beta-lactamase-producing clinical isolates of Pseudomonas spp and Acinetobacter spp. J Clin Microbiol 40(10):3798–801. https://doi.org/10.1128/jcm.40.10.3798-3801.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tan TY, Ng LS, He J, Koh TH, Hsu LY (2009) Evaluation of screening methods to detect plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Antimicrob Agents Chemother 53(1):146–149. https://doi.org/10.1128/aac.00862-08

    Article  CAS  PubMed  Google Scholar 

  35. Maraskolhe DL, Deotale VS, Mendiratta DK, Narang P (2014) Comparision of Three Laboratory Tests for Detection of AmpC β Lactamases in Klebsiella Species and E Coli. J Clin Diagn Res 8(6):Dc05–08. https://doi.org/10.7860/jcdr/2014/8256.4432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dashti A, Jadaon M, Abdulsamad A, Dashti H (2009) Heat Treatment of bacteria: a simple method of DNA extraction for molecular techniques. Kuwait Med J 41:117–122

    Google Scholar 

  37. RStudio Team. (2022) RStudio: Integrated Development Environment for R. Boston: RStudio, PBC

  38. Du J, Li P, Liu H, Lü D, Liang H, Dou Y (2014) Phenotypic and Molecular characterization of multidrug resistant Klebsiella pneumoniae isolated from a University Teaching Hospital, China. PloS one 9(4):e95181. https://doi.org/10.1371/journal.pone.0095181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. See I, Lessa FC, ElAta OA, Hafez S, Samy K, El-Kholy A et al (2013) Incidence and pathogen distribution of healthcare-associated infections in pilot hospitals in Egypt. Infect Control Hosp Epidemiol 34(12):1281–1288. https://doi.org/10.1086/673985

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ahmed SH, Daef EA, Badary MS, Mahmoud MA, Abd-Elsayed AA (2009) Nosocomial blood stream infection in intensive care units at Assiut University Hospitals (Upper Egypt) with special reference to extended spectrum beta-lactamase producing organisms. BMC Res Notes 2:76. https://doi.org/10.1186/1756-0500-2-76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Abdel-Wahab F, Ghoneim M, Khashaba M, El-Gilany AH, Abdel-Hady D (2013) Nosocomial infection surveillance in an Egyptian neonatal intensive care unit. J Hosp Infect 83(3):196–199. https://doi.org/10.1016/j.jhin.2012.10.017

    Article  CAS  PubMed  Google Scholar 

  42. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  PubMed  Google Scholar 

  43. Adekunle OO (2012) Mechanisms of antimicrobial resistance in bacteria, general approach. Int J Pharma Med Biol Sci 1(2):166–187

    Google Scholar 

  44. Hussain HI, Aqib AI, Seleem MN, Shabbir MA, Hao H, Iqbal Z et al (2021) Genetic basis of molecular mechanisms in β-lactam resistant gram-negative bacteria. Microb Pathog 158:105040. https://doi.org/10.1016/j.micpath.2021.105040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alhazmi W, Al-Jabri A, Al-Zahrani I (2022) The Molecular characterization of nosocomial carbapenem-resistant Klebsiella pneumoniae co-harboring blaNDM and blaOXA-48 in Jeddah. Microbiol Res 13(4):753–764

    Article  CAS  Google Scholar 

  46. Ahmed El-Domany R, El-Banna T, Sonbol F, Abu-Sayedahmed SH (2021) Coexistence of NDM-1 and OXA-48 genes in carbapenem resistant Klebsiella pneumoniae clinical isolates in Kafrelsheikh Egypt. Afr Health Sci 21(2):489–496. https://doi.org/10.4314/ahs.v21i2.2

    Article  PubMed  PubMed Central  Google Scholar 

  47. Khalifa HO, Soliman AM, Ahmed AM, Shimamoto T, Hara T, Ikeda M et al (2017) High carbapenem resistance in clinical gram-negative pathogens isolated in Egypt. Microb Drug Resist 23(7):838–844. https://doi.org/10.1089/mdr.2015.0339

    Article  CAS  PubMed  Google Scholar 

  48. ElMahallawy HA, Zafer MM, Amin MA, Ragab MM, Al-Agamy MH (2018) Spread of carbapenem resistant Enterobacteriaceae at tertiary care cancer hospital in Egypt. Infect Dis (Lond) 50(7):560–4. https://doi.org/10.1080/23744235.2018.1428824

    Article  PubMed  Google Scholar 

  49. Ragheb SM, Tawfick MM, El-Kholy AA, Abdulall AK (2020) Phenotypic and genotypic features of Klebsiella pneumoniae harboring carbapenemases in Egypt: OXA-48-like carbapenemases as an investigated model. Antibiotics (Basel) 9(12):852. https://doi.org/10.3390/antibiotics9120852

    Article  CAS  PubMed  Google Scholar 

  50. Rand KH, Turner B, Seifert H, Hansen C, Johnson JA, Zimmer A (2011) Clinical laboratory detection of AmpC β-lactamase: does it affect patient outcome? Am J Clin Pathol 135(4):572–576. https://doi.org/10.1309/ajcp7vd0nmamqcwa

    Article  PubMed  Google Scholar 

  51. Abdel Aal AM, Khalil NO, Rashed H-AG, Abd Elrahman MZ, ElMelegy TH (2021) Genetic detection of AmpC beta-lactamase among gram-negative isolates "A Single Center Experience’’. Egypt J Immunol 28(4):195–205

    Article  PubMed  Google Scholar 

  52. Sim J, Wright CC (2005) The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Phys Ther 85(3):257–268

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

AG Conceptualization, Methodology, Validation, Formal analysis, Investigation, Supervision, writing original draft, Review & Editing. GHA Methodology, Validation, Formal analysis, Investigation RE Formal & statistical analysis, Writing, Reviewing and Editing HO Conceptualization, Methodology, Validation, Writing, Review & Editing, Supervision HMA-S Conceptualization, Methodology, Formal analysis, Validation, Writing—Review & Editing, Supervision.

Corresponding author

Correspondence to Ahmed Gaballah.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

The authors confirm that the ethical policies of the journal, as noted on the journal’s author guidelines page, have been adhered to and the appropriate ethical review committee approval has been received. The ethics committee of the Medical Research Institute was granted the following approval numbers for the current study: IORG0008812 and IRB00010526.

Consent to Participate

We obtained informed consent to participate from all participants before starting the study.

Consent for Publication

All study participants gave consent for publication as long as their data were presented anonymously.

We obtained the participants consent before seeking publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaballah, A., Ali, G.H., Emad, R. et al. Beta-lactam Resistance Profile among Klebsiella pneumoniae Clinical Isolates from Alexandria, Egypt. Curr Microbiol 80, 356 (2023). https://doi.org/10.1007/s00284-023-03479-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03479-7

Navigation