Skip to main content
Log in

Recent Advances in Metagenomic Approaches, Applications, and Challenges

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

This article has been updated

Abstract

Advances in metagenomics analysis with the advent of next-generation sequencing have extended our knowledge of microbial communities as compared to conventional techniques providing advanced approach to identify novel and uncultivable microorganisms based on their genetic information derived from a particular environment. Shotgun metagenomics involves investigating the DNA of the entire community without the requirement of PCR amplification. It provides access to study all genes present in the sample. On the other hand, amplicon sequencing targets taxonomically important marker genes, the analysis of which is restricted to previously known DNA sequences. While sequence-based metagenomics is used to analyze DNA sequences directly from the environment without the requirement of library construction and with limited identification of novel genes and products that can be complemented by functional genomics, function-based metagenomics requires fragmentation and cloning of extracted metagenome DNA in a suitable host with subsequent functional screening and sequencing clone for detection of a novel gene. Although advances were made in metagenomics, different challenges arise. This review provides insight into advances in the metagenomic approaches combined with next-generation sequencing, their recent applications highlighting the emerging ones, such as in astrobiology, forensic sciences, and SARS-CoV-2 infection diagnosis, and the challenges associated. This review further discusses the different types of metagenomics and outlines advancements in bioinformatics tools and their significance in the analysis of metagenomic datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 08 October 2023

    The word “Challenge” in the article title is updated as “Challenges”

References

  1. Coughlan LM, Cotter PD, Hill C, Alvarez-Ordóñez A (2015) Biotechnological applications of functional metagenomics in the food and pharmaceutical industries. Front Microbiol 6:1–22. https://doi.org/10.3389/fmicb.2015.00672

    Article  Google Scholar 

  2. Mirete S, Morgante V, González-Pastor JE (2016) Functional metagenomics of extreme environments. Curr Opin Biotechnol 38:143–149. https://doi.org/10.1016/j.copbio.2016.01.017

    Article  CAS  PubMed  Google Scholar 

  3. Behzad H, Gojobori T, Mineta K (2015) Challenges and opportunities of airborne metagenomics. Genome Biol Evol 7(5):1216–1226. https://doi.org/10.1093/gbe/evv064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Degois J, Clerc F, Simon X, Bontemps C, Leblond P, Duquenne P (2017) First metagenomic survey of the microbial diversity in bioaerosols emitted in waste sorting plants. Ann Work Expo Heal 61(9):1076–1086. https://doi.org/10.1093/annweh/wxx075

    Article  Google Scholar 

  5. dos Santos DFK, Istvan P, Quirino BF, Kruger RH (2017) Functional metagenomics as a tool for identification of new antibiotic resistance genes from natural environments. Microb Ecol 73(2):479–491. https://doi.org/10.1007/s00248-016-0866-x

    Article  CAS  PubMed  Google Scholar 

  6. Scholz MB, Lo CC, Chain PSG (2012) Next generation sequencing and bioinformatic bottlenecks: The current state of metagenomic data analysis. Curr Opin Biotechnol 23(1):9–15. https://doi.org/10.1016/j.copbio.2011.11.013

    Article  CAS  PubMed  Google Scholar 

  7. Ju F, Zhang T (2015) experimental design and bioinformatics analysis for the application of metagenomics in environmental sciences and biotechnology. Environ Sci Technol 49(21):12628–12640. https://doi.org/10.1021/acs.est.5b03719

    Article  CAS  PubMed  Google Scholar 

  8. Datta S, Rajnish KN, Samuel MS, Pugazlendhi A, Selvarajan E (2020) Metagenomic applications in microbial diversity, bioremediation, pollution monitoring, enzyme and drug discovery: A review. Environ Chem Lett 18(4):1229–1241. https://doi.org/10.1007/s10311-020-01010-z

    Article  CAS  Google Scholar 

  9. Laudadio I, Fulci V, Stronati L, Carissimi C (2019) Next-generation metagenomics: methodological challenges and opportunities. Omi A J Integr Biol 23(7):327–333. https://doi.org/10.1089/omi.2019.0073

    Article  CAS  Google Scholar 

  10. Vincent AT, Derome N, Boyle B, Culley AI, Charette SJ (2017) Next-generation sequencing (NGS) in the microbiological world: How to make the most of your money. J Microbiol Methods 138:60–71. https://doi.org/10.1016/j.mimet.2016.02.016

    Article  CAS  PubMed  Google Scholar 

  11. Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14(3):303–310. https://doi.org/10.1016/S0958-1669(03)00067-3

    Article  CAS  PubMed  Google Scholar 

  12. Awasthi KM et al (2020) Metagenomics for taxonomy profiling: tools and approaches. Bioengineered 11(1):356–374. https://doi.org/10.1080/21655979.2020.1736238

    Article  CAS  Google Scholar 

  13. Charles TC, Liles MR, Sessitsch A (2017) Functional metagenomics: Tools and applications. Springer link. https://doi.org/10.1007/978-3-319-61510-3

    Article  Google Scholar 

  14. Castañeda LE, Barbosa O (2017) Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. PeerJ 3:1–19. https://doi.org/10.7717/peerj.3098

    Article  CAS  Google Scholar 

  15. Yun J, Ryu S (2005) Screening for novel enzymes from metagenome and SIGEX, as a way to improve it. Microb Cell Fact 4:1–5. https://doi.org/10.1186/1475-2859-4-8

    Article  CAS  Google Scholar 

  16. Lam KN, Cheng J, Engel K, Neufeld JD, Charles TC (2015) Current and future resources for functional metagenomics. Front Microbiol 6:1–8. https://doi.org/10.3389/fmicb.2015.01196

    Article  Google Scholar 

  17. Singh BK, Macdonald CA (2010) Drug discovery from uncultivable microorganisms. Drug Discov Today 15(17–18):792–799. https://doi.org/10.1016/j.drudis.2010.07.002

    Article  CAS  PubMed  Google Scholar 

  18. Roumpeka DD, Wallace RJ, Escalettes F, Fotheringham I, Watson M (2017) A review of bioinformatics tools for bio-prospecting from metagenomic sequence data. Front Genet. https://doi.org/10.3389/fgene.2017.00023

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bikel S et al (2015) Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: Towards a systems-level understanding of human microbiome. Comput Struct Biotechnol J 13:390–401. https://doi.org/10.1016/j.csbj.2015.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chiang AD, Dekker JP (2020) From the pipeline to the bedside: Advances and challenges in clinical metagenomics. J Infect Dis 221(3):331–340. https://doi.org/10.1093/infdis/jiz151

    Article  CAS  Google Scholar 

  21. Zhou XG, Ren LF, Li YT, Zhang M, Yu YD, Yu J (2010) The next-generation sequencing technology: A technology review and future perspective. Sci China Life Sci 53(1):44–57. https://doi.org/10.1007/s11427-010-0023-6

    Article  CAS  PubMed  Google Scholar 

  22. Ghanbari M, Kneifel W, Domig KJ (2015) A new view of the fish gut microbiome: Advances from next-generation sequencing. Aquaculture 448:464–475. https://doi.org/10.1016/j.aquaculture.2015.06.033

    Article  CAS  Google Scholar 

  23. Barzon L, Lavezzo E, Militello V, Toppo S, Palù G (2011) Applications of next-generation sequencing technologies to diagnostic virology. Int J Mol Sci 12(11):7861–7884. https://doi.org/10.3390/ijms12117861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fadiji AE, Babalola OO (2020) Metagenomics methods for the study of plant-associated microbial communities: A review. J Microbiol Methods 170(12):105860. https://doi.org/10.1016/j.mimet.2020.105860

    Article  CAS  PubMed  Google Scholar 

  25. Sevim V et al (2019) Shotgun metagenome data of a defined mock community using Oxford Nanopore PacBio and Illumina technologies. Sci Data 6(1):1–9. https://doi.org/10.1038/s41597-019-0287-z

    Article  CAS  Google Scholar 

  26. Dumschott K, Schmidt MHW, Chawla HS, Snowdon R, Usadel B (2020) Oxford Nanopore sequencing: new opportunities for plant genomics? J Exp Bot 71(18):5313–5322. https://doi.org/10.1093/jxb/eraa263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yohe S, Thyagarajan B (2017) Review of clinical next-generation sequencing. Arch Pathol Lab Med 141(11):1544–1557. https://doi.org/10.5858/arpa.2016-0501-RA

    Article  CAS  PubMed  Google Scholar 

  28. Li L, He Q, Ma Y, Wang X, Peng X (2016) A mesophilic anaerobic digester for treating food waste: Process stability and microbial community analysis using pyrosequencing. Microb Cell Fact 15(1):1–11. https://doi.org/10.1186/s12934-016-0466-y

    Article  CAS  Google Scholar 

  29. Reddington K et al (2020) Metagenomic analysis of planktonic riverine microbial consortia using nanopore sequencing reveals insight into river microbe taxonomy and function. Gigascience 9(6):1–12. https://doi.org/10.1093/gigascience/giaa053

    Article  CAS  Google Scholar 

  30. Hiraoka S, Yang CC, Iwasaki W (2016) Metagenomics and bioinformatics in microbial ecology: Current status and beyond. Microbes Environ 31(3):204–212. https://doi.org/10.1264/jsme2.ME16024

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ghurye JS, Cepeda-Espinoza V, Pop M (2016) Metagenomic assembly: Overview, challenges and applications. Yale J Biol Med 89(3):353–362

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Teeling H, Glöckner FO (2012) Current opportunities and challenges in microbial metagenome analysis-A bioinformatic perspective. Brief Bioinform 13(6):728–742. https://doi.org/10.1093/bib/bbs039

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhu W, Lomsadze A, Borodovsky M (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 38(12):1–15. https://doi.org/10.1093/nar/gkq275

    Article  CAS  Google Scholar 

  34. Pessôa MG, Vespermann KAC, Paulino BN, Barcelos MCS, Pastore GM, Molina G (2019) Newly isolated microorganisms with potential application in biotechnology. Biotechnol Adv 37(2):319–339. https://doi.org/10.1016/j.biotechadv.2019.01.007

    Article  CAS  PubMed  Google Scholar 

  35. Sharma P, Kumar S, Pandey A (2021) Bioremediated techniques for remediation of metal pollutants using metagenomics approaches: A review. J Environ Chem Eng 9(4):105684. https://doi.org/10.1016/j.jece.2021.105684

    Article  CAS  Google Scholar 

  36. Bekele GK et al (2022) Isolation and characterization of diesel-degrading bacteria from hydrocarbon-contaminated sites, flower farms, and soda lakes. Int J Microbiol. https://doi.org/10.1155/2022/5655767

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ogbonna DN, Udotong IR, Basi N, Nrior RR (2021) Culture-dependent and metagenomic profiling of Eukaryal diversity in petroleum hydrocarbon-polluted soil from B-Dere, Gokana, Rivers state Nigeria. J Adv Microbiol 21(12):64–73. https://doi.org/10.9734/jamb/2021/v21i1230414

    Article  CAS  Google Scholar 

  38. Gao Y et al (2021) Metagenomics analysis identifies nitrogen metabolic pathway in bioremediation of diesel contaminated soil. Chemosphere 271:129566. https://doi.org/10.1016/j.chemosphere.2021.129566

    Article  CAS  PubMed  Google Scholar 

  39. Chakraborty J, Rajput V, Sapkale V, Kamble S, Dharne M (2021) Spatio-temporal resolution of taxonomic and functional microbiome of Lonar soda lake of India reveals metabolic potential for bioremediation. Chemosphere 264:128574. https://doi.org/10.1016/j.chemosphere.2020.128574

    Article  CAS  PubMed  Google Scholar 

  40. Dell’Anno F et al (2021) Metagenome-assembled genome (MAG) of Oceancaulis alexandrii NP7 isolated from Mediterranean Sea polluted marine sediments and its bioremediation potential. Genes, Genomes, Genet 11(9):1–4. https://doi.org/10.1093/g3journal/jkab210

    Article  Google Scholar 

  41. Fan MZ, Wang W, Cheng L, Chen J, Fan W, Wang M (2021) Metagenomic discovery and characterization of multi-functional and monomodular processive endoglucanases as biocatalysts. Appl Sci 11(11):1–36. https://doi.org/10.3390/app11115150

    Article  CAS  Google Scholar 

  42. Choure K et al (2021) Comparative metagenomic analysis of two alkaline hot springs of Madhya Pradesh, India and deciphering the extremophiles for industrial enzymes. Front Genet 12(3):1–11. https://doi.org/10.3389/fgene.2021.643423

    Article  CAS  Google Scholar 

  43. Thompson CE et al (2013) A potential source for cellulolytic enzyme discovery and environmental aspects revealed through metagenomics of Brazilian mangroves. AMB Express 3:1–35. https://doi.org/10.1186/2191-0855-3-65

    Article  CAS  Google Scholar 

  44. Motahar SFS et al (2020) A novel metagenome-derived thermostable and poultry feed compatible α-amylase with enhanced biodegradation properties. Int J Biol Macromol 164:2124–2133. https://doi.org/10.1016/j.ijbiomac.2020.08.064

    Article  CAS  PubMed  Google Scholar 

  45. Bai DP et al (2012) Metagenomics approach to identify lignocellulose-degrading enzymes in the gut microbiota of the Chinese bamboo rat cecum. Electron J Biotechnol 50:29–36. https://doi.org/10.1016/j.ejbt.2020.12.001

    Article  CAS  Google Scholar 

  46. Xia Y, Ju F, Fang HHP, Zhang T (2013) Mining of novel thermo-stable cellulolytic genes from a thermophilic cellulose-degrading consortium by metagenomics. PLoS ONE 8(1):e53779. https://doi.org/10.1371/journal.pone.0053779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mahapatra GP, Raman S, Nayak S, Gouda S, Das G, Patra JK (2020) Metagenomics approaches in discovery and development of new bioactive compounds from marine actinomycetes. Curr Microbiol 77(4):645–656. https://doi.org/10.1007/s00284-019-01698-5

    Article  CAS  PubMed  Google Scholar 

  48. Milshteyn A, Colosimo DA, Brady SF (2018) Accessing bioactive natural products from the human microbiome. Cell Host Microbe 23(6):725–736. https://doi.org/10.1016/j.chom.2018.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ivanov I et al (2021) Bioactive compounds produced by the accompanying microflora in bulgarian yoghurt. Processes 9(1):1–16. https://doi.org/10.3390/pr9010114

    Article  CAS  Google Scholar 

  50. Nikolouli K, Mossialos D (2012) Bioactive compounds synthesized by non-ribosomal peptide synthetases and type-I polyketide synthases discovered through genome-mining and metagenomics. Biotechnol Lett 34(8):1393–1403. https://doi.org/10.1007/s10529-012-0919-2

    Article  CAS  PubMed  Google Scholar 

  51. Eltokhy MA, Saad BT, Eltayeb WN, Yahia IS, Aboshanab KM, Ashour MSE (2022) Exploring the nature of the antimicrobial metabolites produced by paenibacillus ehimensis soil isolate mz921932 using a metagenomic nanopore sequencing coupled with lc-mass analysis. Antibiotics 11(1):1–20. https://doi.org/10.3390/antibiotics11010012

    Article  CAS  Google Scholar 

  52. Stevenson LJ et al (2021) Metathramycin, a new bioactive aureolic acid discovered by heterologous expression of a metagenome derived biosynthetic pathway. RSC Chem Biol 2(2):556–567. https://doi.org/10.1039/d0cb00228c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Amin DH, Nageeb WM, Elkelish A, Makharita RR (2022) Mining metagenomes reveals diverse antibiotic biosynthetic genes in uncultured microbial communities. Res Sq. https://doi.org/10.21203/rs.3.rs-1214433/v1

    Article  Google Scholar 

  54. Berry MI et al (2022) Next generation sequencing and bioinformatics methodologies for infectious disease research and public health: approaches, applications, and considerations for development of laboratory capacity. J Infect Dis 221:S292–S307. https://doi.org/10.1093/infdis/jiz286

    Article  CAS  Google Scholar 

  55. Chiang AD, Dekker JP (2020) From the pipeline to the bedside: Advances and challenges in clinical metagenomics. J Infect Dis 221(3):S331–S340. https://doi.org/10.1093/infdis/jiz151

    Article  CAS  Google Scholar 

  56. Chiu CY, Miller SA (2019) Clinical metagenomics. Nat Rev Genet 20(6):341–355. https://doi.org/10.1038/s41576-019-0113-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bibby K (2013) Metagenomic identification of viral pathogens. Trends Biotechnol 31(5):275–279. https://doi.org/10.1016/j.tibtech.2013.01.016

    Article  CAS  PubMed  Google Scholar 

  58. Miller RR, Montoya V, Gardy JL, Patrick DM, Tang P (2013) Metagenomics for pathogen detection in public health. Genome Med. https://doi.org/10.1186/gm485

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Joakim Larsson DG (2014) Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front Microbiol 5:1–14. https://doi.org/10.3389/fmicb.2014.00648

    Article  Google Scholar 

  60. Nathani NM, Mootapally C, Dave BP (2019) Antibiotic resistance genes allied to the pelagic sediment microbiome in the Gulf of Khambhat and Arabian Sea. Sci Total Environ 653:446–454. https://doi.org/10.1016/j.scitotenv.2018.10.409

    Article  CAS  PubMed  Google Scholar 

  61. Williamson SJ et al (2012) Metagenomic exploration of viruses throughout the Indian Ocean. PLoS ONE. https://doi.org/10.1371/journal.pone.0042047

    Article  PubMed  PubMed Central  Google Scholar 

  62. Domagal-Goldman SD et al (2016) The astrobiology primer v2.0. Astrobiology 16(8):561–653. https://doi.org/10.1089/ast.2015.1460

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ehrenfreund P et al (2011) Astrobiology and habitability studies in preparation for future Mars missions: Trends from investigating minerals, organics and biota. Int J Astrobiol 10(3):239–253. https://doi.org/10.1017/S1473550411000140

    Article  CAS  Google Scholar 

  64. Wang JL, Dragone NB, Avard G, Hynek BM (2022) Microbial survival in an extreme martian analog ecosystem: Poás volcano Costa Rica. Front Astron Sp 9(1):1–16. https://doi.org/10.3389/fspas.2022.817900

    Article  Google Scholar 

  65. Thombre RS, Vaishampayan PA, Gomez F (2020) Applications of extremophiles in astrobiology. Inc. https://doi.org/10.1016/B978-0-12-818322-9.00007-1

    Article  Google Scholar 

  66. Seyler L et al (2020) Metabolomics as an emerging tool in the search for astrobiologically relevant biomarkers. Astrobiology 20(10):1251–1261. https://doi.org/10.1089/ast.2019.2135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bashir AK et al (2021) Taxonomic and functional analyses of intact microbial communities thriving in extreme, astrobiology-relevant, anoxic sites. Microbiome 9(1):50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Green SJ et al (2023) Metagenomic methods for addressing NASA’S planetary protection policy requirements on future missions: a workshop report. Astrobiology. https://doi.org/10.1089/ast.2022.0044

    Article  PubMed  PubMed Central  Google Scholar 

  69. De la Higuera I, Lázaro E (2023) Viruses in astrobiology. Front Microbiol. https://doi.org/10.3389/fmicb.2022.1032918

    Article  Google Scholar 

  70. Urbaniak C et al (2022) Microbial Tracking-2, a metagenomics analysis of bacteria and fungi onboard the International Space Station. Microbiome 10(1):1. https://doi.org/10.1186/s40168-022-01293-0

    Article  CAS  Google Scholar 

  71. Robinson JM, Pasternak Z, Mason CE, Elhaik E (2021) Forensic applications of microbiomics: a review. Front Microbiol 11(1):1–13. https://doi.org/10.3389/fmicb.2020.608101

    Article  Google Scholar 

  72. Fatima M, Hussain S, Babar M, Aftab U, Mushtaq N, and Hm R (2022) International Journal of Forensic Sciences Microbiome and Metagenome Signatures : The Potential Toolkit for Futuristic Forensic Investigations. doi: https://doi.org/10.23880/ijfsc-16000277

  73. Rodriguez C et al (2021) Viral genomic, metagenomic and human transcriptomic characterization and prediction of the clinical forms of COVID-19. PLoS Pathog 17(3):1–21. https://doi.org/10.1371/journal.ppat.1009416

    Article  CAS  Google Scholar 

  74. Liu Y et al (2021) (2021) Distinct metagenomic signatures in the SARS-CoV-2 Infection”. Front Cell Infect Microbiol 11(12):1–12. https://doi.org/10.3389/fcimb.2021.706970

    Article  CAS  Google Scholar 

  75. Sehli S et al (2022) Metagenomics approaches to investigate the gut microbiome of COVID-19 patients. Bioinform Biol Insights. https://doi.org/10.1177/1177932221999428

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mande SS, Mohammed MH, Ghosh TS (2012) Classification of metagenomic sequences: Methods and challenges. Brief Bioinform 13(6):669–681. https://doi.org/10.1093/bib/bbs054

    Article  PubMed  Google Scholar 

  77. Hodkinson BP, Grice EA (2015) Next-generation sequencing: a review of technologies and tools for wound microbiome research. Adv Wound Care 4(1):50–58. https://doi.org/10.1089/wound.2014.0542

    Article  Google Scholar 

  78. Kumar G, Kocour M (2017) Applications of next-generation sequencing in fisheries research: A review. Fish Res 186:11–22. https://doi.org/10.1016/j.fishres.2016.07.021

    Article  Google Scholar 

  79. Breitwieser FP, Lu J, Salzberg SL (2018) A review of methods and databases for metagenomic classification and assembly. Brief Bioinform 20(4):1125–1139. https://doi.org/10.1093/bib/bbx120

    Article  CAS  Google Scholar 

  80. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cantu VA, Sadural J, Edwards R (2019) PRINSEQ++, a multi-threaded tool for fast and efficient quality control and preprocessing of sequencing datasets. PeerJ 7:43–45. https://doi.org/10.7287/peerj.preprints.27553v1

    Article  Google Scholar 

  82. Patel RK, Jain M (2012) NGS QC toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE. https://doi.org/10.1371/journal.pone.0030619

    Article  PubMed  PubMed Central  Google Scholar 

  83. Schmieder R, Edwards R (2011) Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS ONE. https://doi.org/10.1371/journal.pone.0017288

    Article  PubMed  PubMed Central  Google Scholar 

  84. Fiore CL, Labrie M, Jarett JK, Lesser MP (2015) Transcriptional activity of the giant barrel sponge, Xestospongia muta Holobiont: Molecular evidence for metabolic interchange. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00364

    Article  PubMed  PubMed Central  Google Scholar 

  85. Namiki T, Hachiya T, Tanaka H, Sakakibara Y (2012) MetaVelvet: An extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res. https://doi.org/10.1093/nar/gks678

    Article  PubMed  PubMed Central  Google Scholar 

  86. Peng Y, Leung HCM, Yiu SM, Chin FYL (2012) IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11):1420–1428. https://doi.org/10.1093/bioinformatics/bts174

    Article  CAS  PubMed  Google Scholar 

  87. Luo R et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(18):1–6. https://doi.org/10.1186/2047-217x-1-18

    Article  Google Scholar 

  88. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA (2017) MetaSPAdes: A new versatile metagenomic assembler. Genome Res 27(5):824–834. https://doi.org/10.1101/gr.213959.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Boisvert S, Raymond F, Godzaridis É, Laviolette F, Corbeil J (2012) Ray Meta: Scalable de novo metagenome assembly and profiling. Genome Biol. https://doi.org/10.1186/gb-2012-13-12-r122

    Article  PubMed  PubMed Central  Google Scholar 

  90. Treangen TJ et al (2013) MetAMOS: A modular and open source metagenomic assembly and analysis pipeline. Genome Biol 14(1):1–20. https://doi.org/10.1186/gb-2013-14-1-r2

    Article  Google Scholar 

  91. Richter DC, Schuster SC, Huson DH (2007) OSLay: Optimal syntenic layout of unfinished assemblies. Bioinformatics 23(13):1573–1579. https://doi.org/10.1093/bioinformatics/btm153

    Article  CAS  PubMed  Google Scholar 

  92. Liu CM, Luo R, Lam TW (2014) GPU-Accelerated BWT Construction for Large Collection of Short Reads. arXiv. doi.org/https://doi.org/10.48550/arXiv.1401.7457

  93. Margulies M et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380. https://doi.org/10.1038/nature03959

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wu YW, Tang YH, Tringe SG, Simmons BA, Singer SW (2014) MaxBin: An automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome 2(1):1–18. https://doi.org/10.1186/2049-2618-2-26

    Article  Google Scholar 

  95. Gerlach W, Stoye J (2011) Taxonomic classification of metagenomic shotgun sequences with CARMA3. Nucleic Acids Res. https://doi.org/10.1093/nar/gkr225

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gregor I, Dröge J, Schirmer M, Quince C (2016) McHardy AC (2016) PhyloPythiaS+: A self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes. PeerJ 2:1–21. https://doi.org/10.7717/peerj.1603

    Article  CAS  Google Scholar 

  97. Wang Y, Leung HCM, Yiu SM, Chin FYL (2012) MetaCluster 4.0: A novel binning algorithm for NGS reads and huge number of species. J Comput Biol 19(2):241–249. https://doi.org/10.1089/cmb.2011.0276

    Article  CAS  PubMed  Google Scholar 

  98. Brady A, Salzberg S (2009) Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated markov models arthur. Nat Methods 6(9):673–676. https://doi.org/10.1038/nmeth.1358.Phymm

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Strous M, Kraft B, Bisdorf R, Tegetmeyer HE (2012) The binning of metagenomic contigs for microbial physiology of mixed cultures. Front Microbiol 3(12):1–11. https://doi.org/10.3389/fmicb.2012.00410

    Article  Google Scholar 

  100. Alneberg J et al (2014) Binning metagenomic contigs by coverage and composition. Nat Methods 11(11):1144–1146. https://doi.org/10.1038/nmeth.3103

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Addis Ababa Science and Technology University and to the staff of Biotechnology department for the kind support and regular encouragements.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

NKL contributed to writing of the manuscript and manuscript revision, MTG contributed to supervision and manuscript revision, AAW contributed to supervision and manuscript revision.

Corresponding author

Correspondence to Adugna A. Woldesemayat.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Data Availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lema, N.K., Gemeda, M.T. & Woldesemayat, A.A. Recent Advances in Metagenomic Approaches, Applications, and Challenges. Curr Microbiol 80, 347 (2023). https://doi.org/10.1007/s00284-023-03451-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03451-5

Navigation