Skip to main content
Log in

Contaminated Perry in Patagonia Argentina: A Case Study

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Perry is a beverage obtained by fermentation of pear juice, popular in the North Hemisphere. In Argentina it is an emerging market, particularly in the Patagonian region. The aim of this work is to describe and to evaluate the spoilage yeasts associated to six perry samples showing signs of microbiological contamination from a local craft perry company in North Patagonian region. Eighteen yeasts were isolated from four of the six perry samples where Brettanomyces custersianus, Brettanomyces bruxellensis and Zygosaccharomyces parabailii were identified. The growth capacity of these isolates in the presence of antimicrobial agents (sulfite and potassium sorbate) was analyzed in solid media. Growth parameters in sterile perry must was evaluated and the production of undesirable compounds were evaluated, products were characterized in terms of their aromatic and physicochemical features. The yeasts Z. parabailii NPCC1791 was able to grow on plates containing sulfite concentrations of up to 4 mM and produced high methanol concentrations in perry. Additionally, B. bruxellensis NPPC1792 was able to produce methanol as well as high concentrations of volatile phenols including 4-ethylphenol and 4-ethylguaiacol. These results demonstrate the potential of these species as perry contaminants. Given the lack of studies describing the contaminating yeasts in perry production, this work represents the first report about perry spoilage yeasts in Argentina, with this knowledge, control strategies can be developed to prevent microbiological contamination and minimize product loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jarvis B (1996) Cider, perry, fruit wines and other alcoholic fruit beverages. In: Arthey D, Ashurst PR (eds) Fruit processing. Springer US, Boston, pp 97–134. https://doi.org/10.1007/978-1-4615-2103-7_5

    Chapter  Google Scholar 

  2. Ablin A (2011) Indicadores de la cadena de valor de la sidra. Ministerio de Agricultura, Ganaderia y Pesca de la Nación Argentina. https://alimentosargentinos.magyp.gob.ar/HomeAlimentos/AyB/bebidas/productos/Sidra_2011_09Sep.pdf

  3. Cousin F, Le Guellec R, Schlusselhuber M et al (2017) Microorganisms in fermented apple beverages: current knowledge and future directions. Microorganisms 5:39. https://doi.org/10.3390/microorganisms5030039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tyakht A, Kopeliovich A, Klimenko N et al (2021) Characteristics of bacterial and yeast microbiomes in spontaneous and mixed-fermentation beer and cider. Food Microbiol 94:103658. https://doi.org/10.1016/j.fm.2020.103658

    Article  CAS  PubMed  Google Scholar 

  5. Lorenzini M, Simonato B, Zapparoli G (2018) Yeast species diversity in apple juice for cider production evidenced by culture-based method. Folia Microbiol (Praha) 63:677–684. https://doi.org/10.1007/s12223-018-0609-0

    Article  CAS  PubMed  Google Scholar 

  6. González Flores M, Rodríguez ME, Origone AC et al (2019) Saccharomyces uvarum isolated from Patagonian ciders shows excellent fermentative performance for low temperature cidermaking. Food Res Int 126:108656. https://doi.org/10.1016/j.foodres.2019.108656

    Article  CAS  PubMed  Google Scholar 

  7. Apetrei IM, Rodríguez-Méndez ML, Apetrei C et al (2012) Monitoring of evolution during red wine aging in oak barrels and alternative method by means of an electronic panel test. Food Res Int 45:244–249. https://doi.org/10.1016/j.foodres.2011.10.034

    Article  CAS  Google Scholar 

  8. Romano A, Perello MC, Lonvaud-Funel A et al (2009) Sensory and analytical re-evaluation of “Brett character.” Food Chem 114:15–19. https://doi.org/10.1016/j.foodchem.2008.09.006

    Article  CAS  Google Scholar 

  9. Jackson R (2000) Wine science: principles, practice, perception. Academic Press, Ontario

    Google Scholar 

  10. Tubia I, Prasad K, Pérez-Lorenzo E et al (2018) Beverage spoilage yeast detection methods and control technologies: a review of Brettanomyces. Int J Food Microbiol 283:65–76. https://doi.org/10.1016/j.ijfoodmicro.2018.06.020

    Article  CAS  PubMed  Google Scholar 

  11. Sohlberg E, Sarlin T, Juvonen R (2022) Fungal diversity on brewery filling hall surfaces and quality control samples. Yeast 39:141–155. https://doi.org/10.1002/yea.3687

    Article  CAS  PubMed  Google Scholar 

  12. Hao Z, Zhang Y, Sun Z, Li X (2020) Chitooligosaccharide as a possible replacement for sulfur dioxide in winemaking. Appl Sci 10:578. https://doi.org/10.3390/app10020578

    Article  CAS  Google Scholar 

  13. Jarvis B, Lea AGH (2000) Sulphite binding in ciders. Int J Food Sci Technol 35:113–127. https://doi.org/10.1046/j.1365-2621.2000.00370.x

    Article  CAS  Google Scholar 

  14. Merwin I, Valois S, Padilla-Zakour O (2008) Cider apples and cider-making techniques in Europe and North America. Hortic Rev 34:365–415. https://doi.org/10.1002/9780470380147.ch6

    Article  CAS  Google Scholar 

  15. Parish ME, Worobo WR, Danyluk DM (2015) Juices and juice-containing beverages, chapter 58. In: Salfinger Y, Tortorello ML (eds) Compendium of Methods for the Microbiological Examination of Foods. American Public Health Association, Washington, pp 1–9. https://doi.org/10.2105/MBEF.0222.063

    Chapter  Google Scholar 

  16. Valliere B, Harkins S (2020) A preliminary evaluation to establish bath pasteurization guidelines for hard cider. Beverages 6:24. https://doi.org/10.3390/beverages6020024

    Article  CAS  Google Scholar 

  17. Kurtzman C, Fell JW, Boekhout T (2011) The yeasts: a taxonomic study. Elsevier, London

    Google Scholar 

  18. Park H, Lopez NI, Bakalinsky AT (1999) Use of sulfite resistance in Saccharomyces cerevisiae as a dominant selectable marker. Curr Genet 36:339–344. https://doi.org/10.1007/s002940050508

    Article  CAS  Google Scholar 

  19. Zwietering MH, Jongenburger I, Rombouts FM, van ’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881. https://doi.org/10.1128/aem.56.6.1875-1881.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ribéreau-Gayon P, Dubourdieu D, Donèche B (2006) Handbook of enology, vol 1, The microbiology of wine and vinitifications. Wiley, London

    Google Scholar 

  21. Rojas V, Gil JV, Piñaga F, Manzanares P (2001) Studies on acetate ester production by non-saccharomyces wine yeasts. Int J Food Microbiol 70:283–289. https://doi.org/10.1016/s0168-1605(01)00552-9

    Article  CAS  PubMed  Google Scholar 

  22. González Flores M, Rodríguez ME, Oteiza JM et al (2017) Physiological characterization of Saccharomyces uvarum and Saccharomyces eubayanus from Patagonia and their potential for cidermaking. Int J Food Microbiol 249:9–17. https://doi.org/10.1016/j.ijfoodmicro.2017.02.018

    Article  CAS  PubMed  Google Scholar 

  23. Suiker IM, Wösten HA (2022) Spoilage yeasts in beer and beer products. Curr Opin Food Sci 44:100815. https://doi.org/10.1016/j.cofs.2022.100815

    Article  Google Scholar 

  24. Latorre M, Bruzone MC, De Garcia V, Libkind D (2023) Contaminantes microbianos en cervezas artesanales embotelladas de la Patagonia andina argentina. Rev Argent Microbiol 55:88–99. https://doi.org/10.1016/j.ram.2022.05.006

    Article  PubMed  Google Scholar 

  25. Galasong Y, Sogin JH, Worobo RW (2023) Natural glycolipids inhibits certain yeasts and lactic acid bacteria pertinent to the spoilage of shelf stable beverages. Food Control 146:109544. https://doi.org/10.1016/j.foodcont.2022.109544

    Article  CAS  Google Scholar 

  26. De Roos J, De Vuyst L (2018) Acetic acid bacteria in fermented foods and beverages. Curr Opin Biotechnol 49:115–119. https://doi.org/10.1016/j.copbio.2017.08.007

    Article  CAS  PubMed  Google Scholar 

  27. Shankar V, Mahboob S, Al-Ghanim KA et al (2021) A review on microbial degradation of drinks and infectious diseases: a perspective of human well-being and capabilities. J King Saud Univ Sci 33:101293. https://doi.org/10.1016/j.jksus.2020.101293

    Article  Google Scholar 

  28. Al Riachy R, Strub C, Durand N et al (2021) Microbiome status of cider-apples, from orchard to processing, with a special focus on Penicillium expansum occurrence and patulin contamination. J Fungi 7:244. https://doi.org/10.3390/jof7040244

    Article  CAS  Google Scholar 

  29. Misery B, Legendre P, Rue O et al (2021) Diversity and dynamics of bacterial and fungal communities in cider for distillation. Int J Food Microbiol 339:108987. https://doi.org/10.1016/j.ijfoodmicro.2020.108987

    Article  CAS  PubMed  Google Scholar 

  30. Lawlor KA, Schuman JD, Simpson PG, Taormina PJ (2009) Microbiological spoilage of beverages. In: Sperber WH, Doyle MP (eds) Compendium of the microbiological spoilage of foods and beverages. Springer, New York, pp 245–284

    Chapter  Google Scholar 

  31. Kalli S, Araya-Cloutier C, Chapman J et al (2022) Prenylated (iso)flavonoids as antifungal agents against the food spoiler Zygosaccharomyces parabailii. Food Control 132:108434. https://doi.org/10.1016/j.foodcont.2021.108434

    Article  CAS  Google Scholar 

  32. Suh S-O, Gujjari P, Beres C et al (2013) Proposal of Zygosaccharomyces parabailii sp. nov. and Zygosaccharomyces pseudobailii sp. nov., novel species closely related to Zygosaccharomyces bailii. Int J Syst Evol Microbiol 63:1922–1929. https://doi.org/10.1099/ijs.0.048058-0

    Article  PubMed  Google Scholar 

  33. Juvonen R, Virkajärvi V, Priha O, Laitila A (2011) Microbiological spoilage and safety risks in non-beer beverages. VTT Tiedotteita Res Notes. https://doi.org/10.13140/RG.2.1.3166.8562

    Article  Google Scholar 

  34. Meldrum AD, Ünlü G, Joyner H (2022) The effect of organic acids and storage temperature on lite salad dressing rheology and Zygosaccharomyces parabailii growth. J Food Sci Technol 59:4075–4084. https://doi.org/10.1007/s13197-022-05459-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shimotsu S, Asano S, Iijima K et al (2015) Investigation of beer-spoilage ability of Dekkera/Brettanomyces yeasts and development of multiplex PCR method for beer-spoilage yeasts. J Inst Brew 121:177–180. https://doi.org/10.1002/jib.209

    Article  CAS  Google Scholar 

  36. Harrouard J, Eberlein C, Ballestra P et al (2023) Brettanomyces bruxellensis: overview of the genetic and phenotypic diversity of an anthropized yeast. Mol Ecol 32:2374–2395. https://doi.org/10.1111/mec.16439

    Article  CAS  PubMed  Google Scholar 

  37. Rodríguez Madrera R, Pando Bedriñana R, Suárez Valles B (2021) Evaluation of indigenous non-Saccharomyces cider yeasts for use in brewing. Eur Food Res Technol 247:819–828. https://doi.org/10.1007/s00217-020-03665-y

    Article  CAS  Google Scholar 

  38. Varela C, Bartel C, Roach M et al (2019) Brettanomyces bruxellensis SSU1 haplotypes confer different levels of sulfite tolerance when expressed in a Saccharomyces cerevisiae SSU1 null mutant. Appl Environ Microbiol 85:e02429-18. https://doi.org/10.1128/AEM.02429-18

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bartel C, Roach M, Onetto C et al (2021) Adaptive evolution of sulfite tolerance in Brettanomyces bruxellensis. FEMS Yeast Res 21:foab036. https://doi.org/10.1093/femsyr/foab036

    Article  CAS  PubMed  Google Scholar 

  40. Kanpiengjai A, Chui-Chai N, Chaikaew S, Khanongnuch C (2016) Distribution of tannin-’tolerant yeasts isolated from Miang, a traditional fermented tea leaf (Camellia sinensis var. assamica) in northern Thailand. Int J Food Microbiol 238:121–131. https://doi.org/10.1016/j.ijfoodmicro.2016.08.044

    Article  CAS  PubMed  Google Scholar 

  41. Muhollari T, Szűcs S, Ádány R et al (2022) Methanol in unrecorded fruit spirits. Does it pose a health risk to consumers in the European Union? A probabilistic toxicological approach. Toxicol Lett 357:43–56. https://doi.org/10.1016/j.toxlet.2021.12.019

    Article  CAS  PubMed  Google Scholar 

  42. Blumenthal P, Steger M, Einfalt D et al (2021) Methanol mitigation during manufacturing of fruit spirits with special consideration of novel coffee cherry spirits. Molecules 26:2585. https://doi.org/10.3390/molecules26092585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Antón MJ, Suárez Valles B, García Hevia A, Picinelli Lobo A (2014) Aromatic profile of ciders by chemical quantitative, gas chromatography-olfactometry, and sensory analysis: aromas of cider…. J Food Sci 79:S92–S99. https://doi.org/10.1111/1750-3841.12323

    Article  CAS  PubMed  Google Scholar 

  44. Buron N, Guichard H, Coton E et al (2011) Evidence of 4-ethylcatechol as one of the main phenolic off-flavour markers in French ciders. Food Chem 125:542–548. https://doi.org/10.1016/j.foodchem.2010.09.046

    Article  CAS  Google Scholar 

  45. Lattey KA, Bramley BR, Francis IL (2010) Consumer acceptability, sensory properties and expert quality judgements of Australian Cabernet Sauvignon and Shiraz wines. Aust J Grape Wine Res 16:189–202. https://doi.org/10.1111/j.1755-0238.2009.00069.x

    Article  Google Scholar 

Download references

Acknowledgements

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) for doctoral fellowship of Lic. Victoria Kleinjan.

Funding

Financial support for this work was provided by grants from Universidad Nacional del Comahue (PI04A146, PI04A143) and Agencia-FONCyT (PICT 2020-2157 and PICT Startup 2019-00034).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Visualization, Investigation, Material preparation, data collection and analysis were performed by VG, MGF and VK. Supervision, Writing—Reviewing and Editing were performed by MER and CAL. The first draft of the manuscript was written by VG and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Virginia de Garcia.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Garcia, V., Gonzalez Flores, M., Kleinjan, V. et al. Contaminated Perry in Patagonia Argentina: A Case Study. Curr Microbiol 80, 329 (2023). https://doi.org/10.1007/s00284-023-03442-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03442-6

Navigation