Skip to main content
Log in

Description of Tellurirhabdus bombi sp. nov., Isolated from Bumblebee

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-stain-negative, aerobic, non-motile, and rod-shaped bacterium, designated IE-0392T, was isolated from a bumblebee. The 16S rRNA gene sequence (highest 16S rRNA gene sequence similarity with the type strain of Tellurirhabdus rosea (90.0%) and phylogenetic analysis suggest that strain IE-0392T was a member of the genus Tellurirhabdus. Strain IE-0392T optimally grew at 25 ℃ and pH 7.0. Menaquinone 7 (MK-7) was the only isoprenoid quinone present in strain IE-0392T. The major fatty acids (> 10%) of strain IE-0392T were iso-C15:0, C16:1 ω5c, and iso-C17:0 3-OH. The polar lipids of strain IE-0392T were phosphatidylethanolamine, phosphatidylserine, unidentified aminophospholipids, unidentified aminolipid, unidentified phospholipid, and unidentified lipids. The genomic DNA G + C content of strain IE-0392T was 48.8%. The amino acid identity (AAI) and the average nucleotide identity (ANI) values suggest that strain IE-0392T is a novel member of the genus Tellurirhabdus. The results suggest that strain IE-0392T represents a novel species of the genus Tellurirhabdus, for which the name Tellurirhabdus bombi sp. nov., is proposed. The type strain is IE-0392T (= GDMCC 1.2794T = JCM 35040T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data Availability

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence and whole-genome sequence of strain IE-0392T are MW888470 and CP090557, respectively.

References

  1. Yun JH, Roh SW, Whon TW, Jung MJ, Kim MS et al (2014) Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol 80(17):5254–5264. https://doi.org/10.1128/aem.01226-14

    Article  PubMed  PubMed Central  Google Scholar 

  2. Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34. https://doi.org/10.1146/annurev-ento-010814-020822

    Article  CAS  PubMed  Google Scholar 

  3. Dillon R, Charnley K (2002) Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res Microbiol 153(8):503–509. https://doi.org/10.1016/s0923-2508(02)01361-x

    Article  CAS  PubMed  Google Scholar 

  4. Sadd BM, Schmid-Hempel P (2006) Insect immunity shows specificity in protection upon secondary pathogen exposure. Curr Biol 16(12):1206–1210. https://doi.org/10.1016/j.cub.2006.04.047

    Article  CAS  PubMed  Google Scholar 

  5. Velthuis HHW, Av D (2006) A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37(4):421–451. https://doi.org/10.1051/apido:2006019

    Article  Google Scholar 

  6. Killer J, Kopecný J, Mrázek J, Rada V, Benada O et al (2009) Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 59:2020–2024. https://doi.org/10.1099/ijs.0.002915-0

    Article  CAS  PubMed  Google Scholar 

  7. Choi J, Yang D, Chhetri G, Cha S, Seo T (2019) Tellurirhabdus rosea gen. nov., sp. Nov., a new member of the family Cytophagaceae isolated from soil in South Korea. Antonie van Leeuwenhoek 112(7):1047–1054. https://doi.org/10.1007/s10482-019-01238-y

    Article  CAS  PubMed  Google Scholar 

  8. Elyasigomari A, Keshavarzi D, Ahmed Yusuf M, Hassanzadeh A, Marvi N et al (2017) Isolation of bacteria from the digestive tract of Periplaneta americana and Polyphaga aegyptiaca (Blattodea: Blattidae) in Khuzestan Province, Southwestern Iran. Orient Insects 51(4):345–352. https://doi.org/10.1080/00305316.2017.1311811

    Article  Google Scholar 

  9. Narsing Rao MP, Dong ZY, Kan Y, Dong L, Li S et al (2020) Description of Paenibacillus tepidiphilus sp. nov., isolated from a tepid spring. Int J Syst Evol Microbiol 70(3):1977–1981. https://doi.org/10.1099/ijsem.0.004004

    Article  CAS  PubMed  Google Scholar 

  10. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  12. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376. https://doi.org/10.1007/BF01734359

    Article  CAS  PubMed  Google Scholar 

  13. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120. https://doi.org/10.1007/bf01731581

    Article  CAS  PubMed  Google Scholar 

  14. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

    Article  PubMed  Google Scholar 

  15. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  Google Scholar 

  17. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27(5):722–736. https://doi.org/10.1101/gr.215087.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA et al (2015) Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol 16:294. https://doi.org/10.1186/s13059-015-0849-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055. https://doi.org/10.1101/gr.186072.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG et al (2015) Anvi’o: an advanced analysis and visualization platform for ’omics data. PeerJ 3:e1319. https://doi.org/10.7717/peerj.1319

    Article  PubMed Central  Google Scholar 

  21. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW et al (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11(1):119. https://doi.org/10.1186/1471-2105-11-119

    Article  CAS  Google Scholar 

  22. Eddy SR (2011) Accelerated Profile HMM Searches. PLoS Comput Biol 7(10):e1002195. https://doi.org/10.1371/journal.pcbi.1002195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee MD (2019) GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 35(20):4162–4164. https://doi.org/10.1093/bioinformatics/btz188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK (2016) Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 8(1):12–24. https://doi.org/10.1039/C5AY02550H

    Article  Google Scholar 

  26. Kovacs N (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178(4535):703. https://doi.org/10.1038/178703a0

    Article  CAS  PubMed  Google Scholar 

  27. Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95. https://doi.org/10.1111/j.1365-2672.1979.tb01172.x

    Article  CAS  Google Scholar 

  28. Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 48(3):459–470. https://doi.org/10.1111/j.1365-2672.1980.tb01036.x

    Article  CAS  Google Scholar 

  29. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100(2):221–230. https://doi.org/10.1099/00221287-100-2-221

    Article  CAS  PubMed  Google Scholar 

  30. Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded Ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367. https://doi.org/10.1080/01483918208067640

    Article  CAS  Google Scholar 

  31. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. Newark, DE: MIDI inc

  32. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M (2020) List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 70(11):5607–5612. https://doi.org/10.1099/ijsem.0.004332

    Article  PubMed  PubMed Central  Google Scholar 

  33. Konstantinidis KT, Rosselló-Móra R, Amann R (2017) Uncultivated microbes in need of their own taxonomy. ISME J 11(11):2399–2406. https://doi.org/10.1038/ismej.2017.113

    Article  PubMed  PubMed Central  Google Scholar 

  34. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106(45):19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vancanneyt M, Nedashkovskaya OI, Snauwaert C, Mortier S, Vandemeulebroecke K et al (2006) Larkinella insperata gen. nov., sp. nov., a bacterium of the phylum “Bacteroidetes” isolated from water of a steam generator. Int J Syst Evol Microbiol 56:237–241. https://doi.org/10.1099/ijs.0.63948-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Shaanxi Province Academy of Sciences, China, for kindly supporting the project. We are grateful to Ling-ling Yang for the electron microscopy sample preparation.

Funding

This research work was supported by the Foundation of Science and Technology in Shaanxi Province (2020TD-050); Science and Technology Research Project of Shaanxi Province Academy of Sciences (grant: 2018nk-01); Key Research and Development Program of Shaanxi Province (grant: 2022NY-136); Agricultural Technology Research Project of Xi’an (grant: 21NYYF0027).

Author information

Authors and Affiliations

Authors

Contributions

YiW supervised the study. KZ designed the research and project outline. SYN performed sample collection. JW performed isolation. MPNR and AB conducted the genome analysis. JZ and YaW performed deposition and polyphasic taxonomy. KZ and MPNR finished the study and revised the final manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yi Wan.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest that are relevant to the contents of this article.

Ethical Approval

This article does not contain any studies related to human participants or animals. Therefore, no ethical approval is involved.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 356 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Narsing Rao, M.P., Banerjee, A. et al. Description of Tellurirhabdus bombi sp. nov., Isolated from Bumblebee. Curr Microbiol 80, 337 (2023). https://doi.org/10.1007/s00284-023-03440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03440-8

Navigation