Skip to main content
Log in

Variations in Rhizospheric and Endophytic Root Fungal Communities of Scrophularia ningpoensis in Different Producing Areas

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Few studies have examined the association of factors associated with soil fertility and composition with the structure of microbial communities in the rhizosphere and endosphere. Hence, this study aimed to explore the effects of geographical differences on fungal communities in the roots of Scrophularia ningpoensis and the relationship between the fungal communities and secondary metabolic components in the host plant. We found that there was greater diversity in the fungal communities of the rhizosphere compartment than in endosphere communities. Ascomycota and Basidiomycota were dominant among the endosphere fungi, whereas Mortierellomycota was distributed in the rhizosphere. The composition of bulk soil obtained from different producing areas was significantly different, and the correlation between the rhizospheric and physicochemical compartments of the soil was higher than that observed with the endophytic compartment. Redundancy analysis and canonical correspondence analysis of the rhizospheric and endophytic samples revealed that the organic matter, total organic carbon, total nitrogen, and Hg levels were adequately correlated with the composition of rhizospheric and endophytic fungal communities. Multiple linear regression analyses facilitated the identification of potentially beneficial fungi whose abundance was correlated with levels of secondary metabolites, such as harpagide and harpagoside. These fungi could potentially provide valuable information regarding the use of S. ningpoensis in the medicinal plant industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ren D, Shen Z, Qin L, Zhu B (2021) Pharmacology, phytochemistry, and traditional uses of Scrophularia ningpoensis Hemsl. J Ethnopharmacol 269:113688

    Article  CAS  PubMed  Google Scholar 

  2. Wei B, Jiang X, Zhang J, Shen D (2017) Research progress of pharmacological effects and cultivation process technology of Scrophularia ningpoensis Hemsl. J Anhui Agric Sci 45(28):2

    Google Scholar 

  3. Wang H, Wang Y, Kang C, Wang S, Zhang Y, Yang G, Zhou L, Xiang Z, Huang L, Liu D, Guo L (2022) Drought stress modifies the community structure of root-associated microbes that improve Atractylodes lancea growth and medicinal compound accumulation. Front Plant Sci 13:1032480

    Article  PubMed  PubMed Central  Google Scholar 

  4. Han MF, Zhang LQ, Li YM (2017) Research progress on chemical structures and pharmacological effects of natural aucubin and its derivatives. Chin Tradit Herb Drug 48(19):4105–4113

    Google Scholar 

  5. Stassen MJJ, Hsu SH, Pieterse CMJ, Stringlis IA (2021) Coumarin coummunication along the microbio root-shoot axis. Trends Plant Sci 26(2):169–183

    Article  CAS  PubMed  Google Scholar 

  6. Jin T, Wang Y, Huang Y et al (2018) Erratum to: Taxonomic structure and functional association of foxtail millet root microbiome. GigaScience 7(11):1–12

    Article  PubMed  Google Scholar 

  7. Mitter EK, de Freitas JR, Germida JJ (2017) Bacterial root microbiome of plants growing in oil sands reclamation covers. Front Microbiol 8:849

    Article  PubMed  Google Scholar 

  8. Pascale A, Proietti S, Pantelides IS, Stringlis IA (2020) Modulation of the root microbiome by plant molecules: the basis for targeted disease suppression and plant growth promotion. Front Plant Sci 10:1741

    Article  PubMed  PubMed Central  Google Scholar 

  9. Berg G, Smalla K (2010) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68(1):1–13

    Article  Google Scholar 

  10. Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA 112(8):7911–7920

    Article  Google Scholar 

  11. Shi J, Yuan X, Lin H, Yang Y, Li Z (2011) Differences in soil properties and bacterial communities between the rhizosphere and bulk soil and among different production areas of the medicinal plant Fritillaria thunbergii. Int J Mol Sci 12(6):3770–3785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jia M, Chen L, Xin H, Zheng C, Rahman K, Han T, Qin LP (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 7:906

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmüller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J Biol Chem 280:26241–26247

    Article  CAS  PubMed  Google Scholar 

  14. Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124

    Article  CAS  PubMed  Google Scholar 

  15. Kusari S, Lamshöft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030

    Article  CAS  PubMed  Google Scholar 

  16. Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71:159–162

    Article  CAS  PubMed  Google Scholar 

  17. Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294

    Article  CAS  PubMed  Google Scholar 

  18. Zhu B, Wu J, Ji Q, Wu W, Dong S, Yu J, Zhang Q, Qin L (2020) Diversity of rhizosphere and endophytic fungi in Atractylodes macrocephala during continuous cropping. Peer J 8:e8905

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Siqueira GM, Dafonte JD, Valcárcel ArmestoFrança e Silva MÊF (2014) Using multivariate geostatistics to assess patterns of spatial dependence of apparent soil electrical conductivity and selected soil properties. Sci World J 2014:712403

    Article  Google Scholar 

  21. Liu Z, Cai X, Liu T, Zhao C, Sun W, Zhu J (2022) Determination of total nitrogen content in soil with graphite digestion apparatus and Kjeldahl nitrogen determination method. Chem Anal Meterage 31(12):4

    Google Scholar 

  22. Peng G, Kang C, Zhong H, Hu Z, Hu G, Li J, Xia X (2011) Study on quality control index of total phosphorus in water by ammonium molybdate spectrophotometry. Environ Impact Asses 33(002):31–34

    Google Scholar 

  23. Yao Q, Liu J, Yu Z, Li Y, Jin J, Liu X, Wang G (2017) Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China. Soil Biol Biochem 110:56–67

    Article  CAS  Google Scholar 

  24. Ye C, Li S, Zhang Y, Zhang Q (2011) Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir, China. J Hazard Mater 191(1–3):366–372

    Article  CAS  PubMed  Google Scholar 

  25. Yang Y, Li X, Tang O, Wang M, Li J, Zhu B, Qin L (2020) Diversity and community structure of endophytic fungi in Corydalis yanhusuo tuber and their correlations with tetrahydropalmatine content. Chin Her Med 51(7):8

    CAS  Google Scholar 

  26. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Met 7(5):335–336

    Article  CAS  Google Scholar 

  27. González V, Tello ML (2011) The endophytic mycota associated with Vitis vinifera in central Spain. Fung Diver 47:29–42

    Article  Google Scholar 

  28. Hartman K, van der Heijden MG, Roussely-Provent V, Walser JC, Schlaeppi K (2017) Deciphering composition and function of the root microbiome of a legume plant. Microbiome 5(1):2

    Article  PubMed  Google Scholar 

  29. Shakya M, Gottel N, Castro H, Yang ZK, Gunter L, Labbé J, Muchero W, Bonito G, Vilgalys R, Tuskan G, Podar M, Schadt CW (2013) A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature populus deltoides trees. PLoS ONE 8(10):e76382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mesa V, Navazas A, González-Gil R, González A, Weyens N, Lauga B, Gallego JLR, Sánchez J, Peláez AI (2017) Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous betula celtiberica. Appl Environ Microbiol 83(8):e03411-03416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Beckers B, Op De Beeck M, Weyens N, Boerjan W, Vangronsveld J (2017) Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome 5(1):25

    Article  PubMed  PubMed Central  Google Scholar 

  32. Osińska-Jaroszuk M, Jarosz-Wilkołazka A, Jaroszuk-Ściseł J, Szałapata K, Nowak A, Jaszek M, Ozimek E, Majewska M (2015) Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties. World J Microbiol Biotechnol 31(12):1823–1844

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wohlbach DJ, Thompson DA, Gasch AP, Regev A (2009) From elements to modules: regulatory evolution in Ascomycota fungi. Curr Opin Genet Dev 19(6):571–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang C, Li J, Liu N, Zhang Y (2019) Effects of fairy ring fungi on plants and soil in the alpine and temperate grasslands of China. Plant Soil 441:499–510

    Article  CAS  Google Scholar 

  35. Sepčić K, Sabotič J, Ohm RA, Drobne D, Jemec Kokalj A (2019) First evidence of cholinesterase-like activity in Basidiomycota. PLoS One 14(4):e0216077

    Article  PubMed  PubMed Central  Google Scholar 

  36. Andrew DR, Fitak RR, Munguia-Vega A, Racolta A, Martinson VG, Dontsova K (2012) Abiotic factors shape microbial diversity in sonoran desert soils. Appl Environ Microbiol 78(21):7527–7537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. İnceoğlu Ö, Falcão Salles J, van Elsas JD (2012) Soil and cultivar type shape the bacterial community in the potato rhizosphere. Microb Ecol 63(2):460–470

    Article  PubMed  Google Scholar 

  38. Santos-González JC, Nallanchakravarthula S, Alström S, Finlay RD (2011) Soil, but not cultivar, shapes the structure of arbuscular mycorrhizal fungal assemblages associated with atrawberry. Microb Ecol 62(1):25–35

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Key Research and Development Program of Zhejiang Province of China (2021C04029), China; The Enshi Prefecture Science and technology program research and development project (D20210035), China; and Young Innovative Talents Project of Zhejiang Medical Health Science and Technology (2022RC052), China.

Author information

Authors and Affiliations

Authors

Contributions

Dan Ren performed the experiments, analyzed the data, and wrote and revised the manuscript; Kunyuan Guo and Qing-mei Sun performed the experiments, and prepared figures and tables. Bo Zhu and Lu-ping Qin conceived and designed the experiments, authored or reviewed drafts of the paper, and approved the final draft.

Corresponding authors

Correspondence to Bo Zhu or Luping Qin.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, D., Guo, K., Sun, Q. et al. Variations in Rhizospheric and Endophytic Root Fungal Communities of Scrophularia ningpoensis in Different Producing Areas. Curr Microbiol 80, 323 (2023). https://doi.org/10.1007/s00284-023-03439-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03439-1

Navigation