Skip to main content

Advertisement

Log in

Association of 3p21.31 Locus (CXCR6 and LZTFL1) with COVID-19 Outcomes in Brazilian Hospitalyzed Subjects

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The 3p21.31 locus has been associated with severe COVID-19 prognosis in GWAS studies. Here, we evaluated whether three polymorphisms (LZTFL1 rs10490770, CXCR6 rs2234355 and rs2234358) in the reported locus were associated with the need for mechanical ventilation, hospitalization length and death in 102 COVID-19 hospitalized Brazilian subjects. No genetic association was found with the need for mechanical ventilation and hospitalization length. CXCR6 rs2234355 was associated with mortality under the codominance model, with carriers of the A/A genotype having a greater chance of death than A/G (OR: 10.5; 95% CI: 1.55–70.76). Our results further suggest that the CXCR6 genetic variant contributes to COVID-19 outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Wu Z, McGoogan JM (2020) Characteristics of and important Lessons from the Coronavirus Disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA - Journal of the American Medical Association 323:1239–1242

    Article  CAS  PubMed  Google Scholar 

  2. Niemi MEK, Karjalainen J, Liao RG et al (2021) Mapping the human genetic architecture of COVID-19. Nature 600:472–477. https://doi.org/10.1038/s41586-021-03767-x

    Article  CAS  Google Scholar 

  3. Muus C, Luecken MD, Eraslan G et al (2021) Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat Med 27:546–559. https://doi.org/10.1038/s41591-020-01227-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ghamrawi R, Gunaratne M (2020) COVID-19 and sex differences. Mayo Clin Proc 95:2189–2203. https://doi.org/10.1016/j.mayocp.2020.07.024

    Article  CAS  PubMed  Google Scholar 

  5. Zhou Y, Chi J, Lv W, Wang Y (2021) Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (Covid-19). Diabetes Metab Res Rev 37:e3377. https://doi.org/10.1002/dmrr.3377

    Article  CAS  PubMed  Google Scholar 

  6. Shokri P, Golmohammadi S, Noori M et al The relationship between blood groups and risk of infection with SARS-CoV-2 or development of severe outcomes: a review. Rev Med Virol n/a: https://doi.org/10.1002/rmv.2247

  7. Miftode R-S, Costache I-I, Cianga P et al (2021) The influence of Socioeconomic Status on the Prognosis and Profile of Patients admitted for Acute Heart failure during COVID-19 pandemic: overestimated aspects or a multifaceted Hydra of Cardiovascular Risk factors? Healthc (Basel) 9. https://doi.org/10.3390/healthcare9121700

  8. Shelton JF, Shastri AJ, Ye C et al (2021) Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 susceptibility and severity. Nat Genet 53:801–808. https://doi.org/10.1038/s41588-021-00854-7

    Article  CAS  PubMed  Google Scholar 

  9. Choi JY, Smith DM (2021) SARS-CoV-2 variants of concern. Yonsei Med J 62:961–968. https://doi.org/10.3349/ymj.2021.62.11.961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ellinghaus D, Degenhardt F, Bujanda L et al (2020) Genomewide Association study of severe Covid-19 with respiratory failure. N Engl J Med. https://doi.org/10.1056/NEJMoa2020283

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zeberg H, Pääbo S (2020) The major genetic risk factor for severe COVID-19 is inherited from neanderthals. Nature 587:610–612. https://doi.org/10.1038/s41586-020-2818-3

    Article  CAS  PubMed  Google Scholar 

  12. Pairo-Castineira E, Clohisey S, Klaric L et al (2021) Genetic mechanisms of critical illness in COVID-19. Nature 591:92–98. https://doi.org/10.1038/s41586-020-03065-y

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Q, Bastard P, Liu Z et al (2020) Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science (1979) 370:. https://doi.org/10.1126/SCIENCE.ABD4570

  14. Cruz R, Lorenzo-salazar JM, González-montelongo R et al (2022) Novel genes and sex differences in COVID-19 severity. 31:3789–3806

  15. Wein AN, McMaster SR, Takamura S et al (2019) CXCR6 regulates localization of tissue-resident memory CD8 T cells to the airways. J Exp Med 216:2748–2762. https://doi.org/10.1084/jem.20181308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Duggal P, An P, Beaty TH et al (2003) Genetic influence of CXCR6 chemokine receptor alleles on PCP-mediated AIDS progression among African Americans. Genes Immun 4:245–250. https://doi.org/10.1038/sj.gene.6363950

    Article  CAS  PubMed  Google Scholar 

  17. Passam AM, Sourvinos G, Krambovitis E et al (2007) Polymorphisms of cx(3)CR1 and CXCR6 receptors in relation to HAART therapy of HIV type 1 patients. AIDS Res Hum Retroviruses 23:1026–1032. https://doi.org/10.1089/aid.2006.0248

    Article  CAS  PubMed  Google Scholar 

  18. Picton ACP, Paximadis M, Chaisson RE et al (2017) CXCR6 gene characterization in two ethnically distinct south african populations and association with viraemic disease control in HIV-1-infected black south african individuals. Clin Immunol 180:69–79. https://doi.org/10.1016/j.clim.2017.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Limou S, Coulonges C, Herbeck JT et al (2010) Multiple-cohort genetic association study reveals CXCR6 as a new chemokine receptor involved in long-term nonprogression to AIDS. J Infect Dis 202:908–915. https://doi.org/10.1086/655782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wei Q, Zhou W, Wang W et al (2010) Tumor-suppressive functions of leucine zipper transcription factor-like 1. Cancer Res 70:2942–2950. https://doi.org/10.1158/0008-5472.CAN-09-3826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Promchan K, Natarajan V (2020) Leucine zipper transcription factor-like 1 binds adaptor protein complex-1 and 2 and participates in trafficking of transferrin receptor 1. PLoS ONE 15:e0226298. https://doi.org/10.1371/journal.pone.0226298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Downes DJ, Cross AR, Hua P et al (2021) Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus. Nat Genet 53:1606–1615. https://doi.org/10.1038/s41588-021-00955-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Angulo-Aguado M, Corredor-Orlandelli D, Carrillo-Martínez JC et al (2022) Association between the LZTFL1 rs11385942 polymorphism and COVID-19 severity in colombian Population. Front Med (Lausanne) 9:910098. https://doi.org/10.3389/fmed.2022.910098

    Article  PubMed  Google Scholar 

  24. Rescenko R, Peculis R, Briviba M et al (2021) Replication of LZTFL1 Gene Region as a susceptibility locus for COVID-19 in Latvian Population. Virol Sin 36:1241–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dai Y, Wang J, Jeong HH et al (2021) Association of CXCR6 with COVID-19 severity: delineating the host genetic factors in transcriptomic regulation. Hum Genet 140:1313–1328. https://doi.org/10.1007/s00439-021-02305-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mistry P, Barmania F, Mellet J et al (2021) SARS-CoV-2 variants, vaccines, and host immunity. Front Immunol 12:809244. https://doi.org/10.3389/fimmu.2021.809244

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We acknowledge support from the Rede Corona-ômica BR MCTI/FINEP affiliated with RedeVírus/MCTI (01.20.0029.000462/20 404096/2020-4; 1227/21 01.22.0074.00); Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (315592/2021-4); Financiadora de Estudos e Projetos - FINEP (0494/20 01.20.0026.00; 1228/21 01.22.0082.00; 1139/20 01.20.0076.00); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES (Finance Code 001) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais—FAPEMIG (APQ-00475-20).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception. JLFA: conducted data curation, visualization, investigation, analysis, and original draft writing. VFB: conducted data curation, visualization, investigation, and analysis. LMB and REA: conducted data curation. RSA and LBA: Conceptualized the experimental design, provided supervision, obtained funding, and reviewed the manuscript. RPS: Conceptualized the experimental design, provided primary supervision, obtained funding, reviewed, and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Luciana Bastos-Rodrigues or Renan Pedra de Souza.

Ethics declarations

Conflict of Interest

The authors did not show any conflict of interest.

Ethics Approval

This study was conducted following the ethical principles established in the declaration of Helsinki and was approved by the UFMG Human Ethics Committee (protocol number: 31095820.4.0000.5149).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Araújo, J.L.F., Bonifácio, V.F., Batista, L.M. et al. Association of 3p21.31 Locus (CXCR6 and LZTFL1) with COVID-19 Outcomes in Brazilian Hospitalyzed Subjects. Curr Microbiol 80, 319 (2023). https://doi.org/10.1007/s00284-023-03437-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03437-3

Navigation