Skip to main content
Log in

Anthropic Impact on the Critically Endangered Melanophryniscus admirabilis (Admirable Redbelly Toad): Evidence from the Presence of Multiresistant Enterobacteriaceae

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Melanophryniscus admirabilis is a microendemic and critically endangered toad, known from a single population. This microendemic species inhabits a small fragment of the Atlantic Forest in South Brazil, an area significantly impacted by hydroelectric power plant projects, livestock farming, agricultural activities, biopiracy, and tourism. Given the exclusive and limited population of M. admirabilis, preserving and conserving this species is of utmost importance in Brazil. Research on this species primarily concentrates on its biology, ecology, and ecotoxicology. Currently, there is no knowledge about antimicrobial resistance (AMR) bacteria present in wild M. admirabilis, despite the potential for studying them to provide valuable insights into environmental pollution. To this end, Enterobacteriaceae species (n = 82) obtained from 15 wild M. admirabilis toads were subjected to the standard Kirby–Bauer disk diffusion method to test their AMR. The results showed that Enterobacteriaceae species had the highest antibiotic resistance to IPM (45.1%), CIP (39%), NIT (32.5%), AMP (31.3%), TET (18.3%), and FOX (17%). Of the tested species, 18 (21.9%) species tested were susceptible, 40 (48.8%) were resistant to 1 or 2 different antibiotic classes, and 24 (29.3%) were classified as multidrug-resistant. Overall, our findings suggest that the incidence of AMR in Enterobacteriaceae isolated from wild M. admirabilis is high, indicating environmental stress caused by anthropic pollution in their habit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data Availability

The data presented are available on request from the corresponding author.

Code Availability

Not applicable.

References

  1. Di-Bernardo M, Maneyro R, Grillo H (2006) New species of Melanophryniscus (Anura: Bufonidae) from Rio Grande do Sul, Southern Brazil. J Herpetol. https://doi.org/10.1670/05-008.1

    Article  Google Scholar 

  2. IUCN – International Union for Conservation of Nature (2013) Melanophryniscus admirabilis. IUCN red list of threatened species. Amphibians on the IUCN red list of threatened species. https://www.iucnredlist.org/species/135993/44846478. Accessed 24 Apr 2023

  3. ICMBio – Instituto Chico Mendes de Conservação da Biodiversidade (2022) https://www.icmbio.gov.br/cepsul/images/stories/legislacao/Portaria/2020/P_mma_148_2022_altera_anexos_P_mma_443_444_445_2014_atualiza_especies_ameacadas_extincao.pdf. Accessed 24 Apr 2023

  4. ICMBio – Instituto Chico Mendes de Conservação da Biodiversidade (2019) Sumário Executivo do Plano de Ação Nacional para a Conservação de Répteis e Anfíbios Ameaçados da Região Sul do Brasil 2º Ciclo. Ministério do Meio Ambiente, Brasília, 8 p. https://www.gov.br/icmbio/pt-br/assuntos/biodiversidade/pan/pan-herpetofauna-do-sul/2-ciclo/pan-herpetofauna-do-sul-sumario.pdf. Accessed 24 Apr 2023

  5. Fonte LFM, Abadie M, Bordignon DW et al (2022) Admirable redbelly toad: the amphibian that defied a hydropower plant. In: DellaSala DA, Goldstein MI (eds) Imperiled: the encyclopedia of conservation. Elseiver, Amsterdam. https://doi.org/10.1016/B978-0-12-821139-7.00100-8

    Chapter  Google Scholar 

  6. Da Silva PR, Borges-Martins M, Oliveira GT (2021) Melanophryniscus admirabilis tadpoles’ responses to sulfentrazone and glyphosate-based herbicides: an approach on metabolism and antioxidant defenses. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-10654-x

    Article  Google Scholar 

  7. Beebee TJC, Griffiths RA (2005) The amphibian decline crisis: a watershed for conservation biology? Biol Conserv. https://doi.org/10.1016/j.biocon.2005.04.009

    Article  Google Scholar 

  8. Baquero F, Martínez JL, Cantón R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol. https://doi.org/10.1016/j.copbio.2008.05.006

    Article  PubMed  Google Scholar 

  9. Laborda P, Sanz-García F, Ochoa-Sánchez LE et al (2022) Wildlife and antibiotic resistance. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2022.873989/full

    Article  PubMed  PubMed Central  Google Scholar 

  10. De Souza ZN, De Moura DF, De Almeida Campos LA et al (2023) Antibiotic resistance profiles on pathogenic bacteria in the Brazilian environments. Arch Microbiol. https://doi.org/10.1007/s00203-023-03524-w

    Article  PubMed  Google Scholar 

  11. Prichula J, Pereira RI, Wachholz GR et al (2016) Resistance to antimicrobial agents among enterococci isolated from fecal samples of wild marine species in the southern coast of Brazil. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2016.02.071

    Article  PubMed  Google Scholar 

  12. Grassotti TT, de Angelis Zvoboda D, da Fontoura Xavier Costa L et al (2018) Antimicrobial resistance profiles in Enterococcus spp. isolates from fecal samples of wild and captive black capuchin monkeys (Sapajus nigritus) in South Brazil. Front Microbiol. https://doi.org/10.3389/fmicb.2018.02366

    Article  PubMed  PubMed Central  Google Scholar 

  13. Araújo GO, Ruff R, Favarini M et al (2020) Multidrug resistance in Enterococci isolated from wild pampas foxes (Lycalopex gymnocercus) and Geoffroy’s cats (Leopardus geoffroyi) in the Brazilian pampa biome. Front Vet Sci. https://doi.org/10.3389/fvets.2020.606377

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mann MB, Prichula J, de Castro ÍMS et al (2021) The oral bacterial community in Melanophryniscus admirabilis (admirable red-belly toads): implications for conservation. Microorganisms. https://doi.org/10.3390/microorganisms9020220

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ienes-Lima J, Prichula J, Abadie M et al (2022) First report of culturable skin bacteria in Melanophryniscus admirabilis (admirable redbelly toad). Microb Ecol. https://doi.org/10.1007/s00248-022-02069-7

    Article  PubMed  Google Scholar 

  16. Gorski L, Jay-Russell MT, Liang AS et al (2013) Diversity of pulsed-field gel electrophoresis pulsotypes, serovars, and antibiotic resistance among Salmonella isolates from wild amphibians and reptiles in the California Central Coast. Foodborne Pathog Dis. https://doi.org/10.1089/fpd.2012.1372

    Article  PubMed  Google Scholar 

  17. Nurcihan H, Tosunoglu M (2014) Determination of antimicrobial and heavy metal resistance profiles of some bacteria isolated from aquatic amphibian and reptile species. Environ Monit Assess. https://doi.org/10.1007/s10661-013-3385-y

    Article  Google Scholar 

  18. Clinical and Laboratory Standards Institute-CLSI (2021) Performance standards for antimicrobial susceptibility testing, M100, 31st ed., Wayne, PA.

  19. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  PubMed  Google Scholar 

  20. Madison JD, Berg EA, Abarca JG et al (2017) Characterization of Batrachochytrium dendrobatidis inhibiting bacteria from amphibian populations in Costa Rica. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00290

    Article  PubMed  PubMed Central  Google Scholar 

  21. Muller HE, Brenner DJ, Fanning GR et al (1996) Emended description of Buttiauxella agrestis with recognition of six new species of Buttiauxella and two new species of Kluyvera: Buttiauxella ferragutiae sp. nov., Buttiauxella gaviniae sp. nov., Buttiauxella brennerae sp. nov., Buttiauxella izardii sp. nov., Buttiauxella noackiae sp. nov., Buttiauxella warmboldiae sp. nov., Kluyvera cochleae sp. nov., and Kluyvera georgiana sp. nov. Int J Syst Bacteriol. https://doi.org/10.1099/00207713-46-1-50

    Article  PubMed  Google Scholar 

  22. Barnes EM, Carter EL, Lewis JD (2020) Predicting microbiome function across space is confounded by strain-level differences and functional redundancy across taxa. Front Microbiol. https://doi.org/10.3389/fmicb.2020.00101

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bortoluzzi EC, Rheinheirner DS, Goncalves CS et al (2007) Investigation of the occurrence of pesticide residues in rural wells and surface water following application to tobacco. Quim Nova. https://doi.org/10.1590/S0100-40422007000800014

    Article  Google Scholar 

  24. Andersson DI, Hughes D (2014) Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol. https://doi.org/10.1038/nrmicro3270

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Federal University of Rio Grande do Sul, Porto Alegre, Brazil, and National Center for Research and Conservation of Reptiles and Amphibians, Chico Mendes Institute for Biodiversity Conservation.

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico do Brasil (CNPq) (#309769/2020–5, and #305495/2018–6) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) of the Brazilian Government.the National Council.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and samples collections were performed by JIL, MA, and MBM. Data analyses were performed by JP and APGF. The first draft of the manuscript was written by JIL, JP, and APGF, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ana Paula Guedes Frazzon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics Approval

The study was carried out following the guidelines of ICMBio and was approved by the Research and Ethics Committees at Federal University of Rio Grande do Sul (Projects 19541, 25526, and 25528) and the Information and Authorization System in Biodiversity (SISBIO) under numbers 40004-5 and 10341-1 (for M. Borges-Martins).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ienes-Lima, J., Prichula, J., Abadie, M. et al. Anthropic Impact on the Critically Endangered Melanophryniscus admirabilis (Admirable Redbelly Toad): Evidence from the Presence of Multiresistant Enterobacteriaceae. Curr Microbiol 80, 339 (2023). https://doi.org/10.1007/s00284-023-03433-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03433-7

Navigation