Skip to main content
Log in

Assembly Processes and Biogeographical Characteristics of Soil Bacterial Sub-communities of Different Habitats in Urban Green Spaces

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The process of urbanization is one of the most important human-driven activities that reshape the natural distribution of soil microorganisms. However, it is still unclear about the effects of urbanization on the different taxonomic soil bacterial community dynamics. In this study, we collected soil samples from highly urbanized the regions of Yangtze River Delta, Beijing–Tianjin–Hebei in China, to explore the bio-geographic patterns, assembly processes, and symbiotic patterns of abundant, moderate, and rare bacterial communities. We found that the number of moderate and rare taxa species were lower than that of abundant taxa, but their α-diversity index was higher than abundant taxa. Proteobacteria, Acidobacteria, Actinobacteria, Bacterioidetes, and Chloroflexi were the dominant phylum across all three sub-communities. And the β-diversity value of rare taxa was significantly higher than those of moderate and abundant taxa. Abundant, moderate, and rare sub-communities showed a weak distance–decay relationship, and the moderate taxa had the highest turnover rate of microbial geography in the context of urbanization. Diffusion limitation was the dominant process of soil bacterial community assembly. The co-occurrence networks of abundant, moderate, and rare taxa were dominated by positive correlations. The network of moderate taxa had the highest modularity, followed by abundant taxa. The main functions of the abundant, moderate, and rare taxa were related to Chemoheterotrophy and N transformations. Redundancy analysis showed that the dispersal limitation, climate, and soil properties were the main factors dominating bio-geographic differences in soil bacterial community diversity. We conclude that human-dominated urbanization processes have generated more uncertain survival pressures on soil bacteria, which resulted in a stronger linkage but weak bio-geographic variation for soil bacteria. In the future urban planning process, we suggest that such maintenance of native vegetation and soil types should be considered to maintain the long-term stability of local microbial ecosystem functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The 16S rRNA gene sequences from this experiment were submitted to the NCBI sequence read archive and are available under BioProject number PRJNA841243.

Code Availability

Not applicable.

References

  1. Nugent A, Allison SD (2022) A framework for soil microbial ecology in urban ecosystems. Ecosphere 13(3):e3968. https://doi.org/10.1002/ecs2.3968

    Article  Google Scholar 

  2. Niemelä J, Breuste J, Guntenspergen G, McIntyre N, Elmqvist T (2011) Urban ecology: patterns, processes, and applications. Oxford University Press, Oxford

    Book  Google Scholar 

  3. Ciach M, Fröhlich A (2017) Habitat type, food resources, noise and light pollution explain the species composition, abundance and stability of a winter bird assemblage in an urban environment. Urban Ecosyst 20:547–559. https://doi.org/10.1007/s11252-016-0613-6

    Article  Google Scholar 

  4. Antwis RE, Griffiths SM, Harrison XA, Aranega-Bou P, Arce A, Bettridge AS, Brailsford FL, de Menezes A, Devaynes A, Forbes KM, Fry EL, Goodhead I, Haskell E, Heys C, James C, Johnston SR, Lewis GR, Lewis Z, Macey MC, McCarthy A, McDonald JE, Mejia-Florez NL, O’Brien D, Orland C, Pautasso M, Reid WDK, Robinson HA, Wilson K, Sutherland WJ (2017) Fifty important research questions in microbial ecology. FEMS Microbiol Ecol 93(5):1–10. https://doi.org/10.1093/femsec/fix044

    Article  CAS  Google Scholar 

  5. Chaudhary A, Kauser I, Ray A, Poretsky R (2018) Taxon driven functional shifts associated with storm flow in an urban stream microbial community. MSphere 3(4):e00194-00212. https://doi.org/10.1128/mSphere.00194-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. LaMartina EL, Mohaimani AA, Newton RJ (2021) Urban wastewater bacterial communities assemble into seasonal steady states. Microbiome 9(1):116. https://doi.org/10.1186/s40168-021-01038-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ramirez KS, Leff JW, Barberan A, Bates ST, Betley J, Crowther TW (2014) Biogeographic patterns in below-ground diversity in New York City’s central park are similar to those observed globally. Biol Sci 281(1798):20141988. https://doi.org/10.1098/rspb.2014.1988

    Article  Google Scholar 

  8. Reese AT, Savage A, Youngsteadt E, McGuire KL, Koling A, Watkins O, Frank SD, Dunn RR (2016) Urban stress is associated with variation in microbial species composition-but not richness-in Manhattan. ISME J 10(3):751–760. https://doi.org/10.1038/ismej.2015.152

    Article  PubMed  Google Scholar 

  9. Gill AS, Purnell K, Palmer MI, Stein J, McGuire KL (2020) Microbial composition and functional diversity differ across urban green infrastructure types. Front Microbiol 11:912. https://doi.org/10.3389/fmicb.2020.00912

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shao QY, Dong CB, Hu HY, Huang JZ, Zou X, Liang ZQ, Han YF (2022) Effects of medicinal plants on fungal community structure and function in hospital grassplot soil. Curr Microbiol 79(12):377. https://doi.org/10.1007/s00284-022-03083-1

    Article  CAS  PubMed  Google Scholar 

  11. Liu L, Barberán A, Gao C, Zhang Z, Wang M, Wurzburger N, Zhang J (2022) Impact of urbanization on soil microbial diversity and composition in the megacity of Shanghai. Land Degrad Dev 33(2):282–293. https://doi.org/10.1002/ldr.4145

    Article  Google Scholar 

  12. Yan B, Li JS, Xiao NW, Qi Y, Fu G, Liu GH, Qiao MP (2016) Urban-development-induced changes in the diversity and composition of the soil bacterial community in Beijing. Sci Rep 6:38811. https://doi.org/10.1038/srep38811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li LY, Pujari L, Wu C, Huang DY, Wei YQ, Guo CC, Sun J (2021) Assembly processes and co-occurrence patterns of abundant and rare bacterial community in the Eastern Indian Ocean. Front Microbiol 12:2234–2250. https://doi.org/10.3389/fmicb.2021.616956

    Article  Google Scholar 

  14. Tripathi BM, Stegen JC, Kim M, Dong K, Adams JM, Lee YK (2018) Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J 12(4):1072–1083. https://doi.org/10.1038/s41396-018-0082-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, Konopka A (2013) Quantifying community assembly processes and identifying features that impose them. ISME J 7(11):2069–2079. https://doi.org/10.1038/ismej.2013.93

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jiao S, Lu YH (2020) Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystems. Environ Microbiol 22(3):1052–1065. https://doi.org/10.1111/1462-2920.14815

    Article  PubMed  Google Scholar 

  17. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10(7):497–506. https://doi.org/10.1038/nrmicro2795

    Article  CAS  PubMed  Google Scholar 

  18. Powell JR, Karunaratne S, Campbell CD, Yao HY, Robinson L, Singh BK (2015) Deterministic processes vary during community assembly for ecologically dissimilar taxa. Nat Commun 6:8444. https://doi.org/10.1038/ncomms9444

    Article  CAS  PubMed  Google Scholar 

  19. Rodrigues JLM, Pellizari VH, Mueller R, Baek K, Jesus ED, Paula FS, Nüsslein K (2013) Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. P Nat Acad Sci 110(3):988–993. https://doi.org/10.1073/pnas.1220608110

    Article  Google Scholar 

  20. Chiquoine LP, Abella SR, Bowker MA (2016) Rapidly restoring biological soil crusts and ecosystem functions in a severely disturbed desert ecosystem. Ecol Appl 26(4):1260–1272. https://doi.org/10.1002/15-0973

    Article  PubMed  Google Scholar 

  21. Yan B, Lu Q, He J, Qi Y, Fu G, Xiao NW, Li JS (2021) Composition and interaction frequencies in soil bacterial communities change in association with urban park age in Beijing. Pedobiologia 84:150699. https://doi.org/10.1016/j.pedobi.2020.150699

    Article  Google Scholar 

  22. Zhang Y, Ji GD, Wu T, Qiu JX (2020) Urbanization significantly impacts the connectivity of soil microbes involved in nitrogen dynamics at a watershed scale. Environ Pollut 258:113708. https://doi.org/10.1016/j.envpol.2019.113708

    Article  CAS  PubMed  Google Scholar 

  23. Wang HT, Marshall CW, Cheng MY, Xu HJ, Li H, Yang XR, Zheng TL (2017) Changes in land use driven by urbanization impact nitrogen cycling and the microbial community composition in soils. Sci Rep 7:44049. https://doi.org/10.1038/srep44049

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lynch MD, Neufeld JD (2015) Ecology and exploration of the rare biosphere. Nat Rev Microbiol 13(4):217–229. https://doi.org/10.1038/nrmicro3400

    Article  CAS  PubMed  Google Scholar 

  25. Pedrós-Alió C (2012) The rare bacterial biosphere. Annu Rev Mater Sci 4:449–466. https://doi.org/10.1146/annurev-marine-120710-100948

    Article  Google Scholar 

  26. Ji M, Kong W, Stegen J, Yue L, Wang F, Dong X, Cowan DA, Ferrari BC (2020) Distinct assembly mechanisms underlie similar biogeographical patterns of rare and abundant bacteria in Tibetan Plateau grassland soils. Environ Microbiol 22(6):2261–2272. https://doi.org/10.1111/1462-2920.14993

    Article  CAS  PubMed  Google Scholar 

  27. Dong CB, Zhang ZY, Shao QY, Yao T, Liang ZQ, Han YF (2021) Mycobiota of Eucommia ulmoides bark: diversity, rare biosphere and core taxa. Fungal Ecol 53:101090–101095. https://doi.org/10.1016/j.funeco.2021.101090

    Article  Google Scholar 

  28. Jiao S, Luo YT, Lu MM, Xiao X, Lin YB, Chen WM, Wei G (2017) Distinct succession patterns of abundant and rare bacteria in temporal microcosms with pollutants. Environ Pollut 225:497–505. https://doi.org/10.1016/j.envpol.2017.03.015

    Article  CAS  PubMed  Google Scholar 

  29. Zhou X, Wu F (2021) Land-use conversion from open field to greenhouse cultivation differently affected the diversities and assembly processes of soil abundant and rare fungal communities. Sci Total Environ 788:147751. https://doi.org/10.1016/j.scitotenv.2021.147751

    Article  CAS  PubMed  Google Scholar 

  30. Wu W, Logares R, Huang B, Hsieh CH (2017) Abundant and rare picoeukaryotic sub-communities present contrasting patterns in the epipelagic waters of marginal seas in the northwestern Pacific Ocean. Environ Microbiol 19(1):287–300. https://doi.org/10.1111/1462-2920.13606

    Article  CAS  PubMed  Google Scholar 

  31. Xue Y, Chen H, Yang JR, Liu M, Huang B, Yang J (2018) Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom. ISME J 12(9):2263–2277. https://doi.org/10.1038/s41396-018-0159-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hou J, Wu L, Liu W, Ge Y, Mu T, Zhou T, Li Z, Zhou J, Sun XI, Luo Y, Christie P (2020) Biogeography and diversity patterns of abundant and rare bacterial communities in rice paddy soils across China. Sci Total Environ 730(1):139116. https://doi.org/10.1016/j.scitotenv.2020.139116

    Article  CAS  PubMed  Google Scholar 

  33. Wan W, Gadd GM, Yang Y, Yuan W, Gu J, Ye L, Liu W (2021) Environmental adaptation is stronger for abundant rather than rare microorganisms in wetland soils from the Qinghai-Tibet Plateau. Mol Ecol 30(10):2390–2403. https://doi.org/10.1111/mec.15882

    Article  PubMed  Google Scholar 

  34. Liu L, Yang J, Yu Z, Wilkinson DM (2015) The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J 9(9):2068–2077. https://doi.org/10.1038/ismej.2015.29

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jiao S, Yang Y, Xu Y, Zhang J, Lu Y (2020) Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME J 14(1):202–216. https://doi.org/10.1038/s41396-019-0522-9

    Article  PubMed  Google Scholar 

  36. Liang Y, Xiao X, Nuccio EE, Yuan M, Zhang NA, Xue K, Cohan FM, Zhou J, Sun BO (2020) Differentiation strategies of soil rare and abundant microbial taxa in response to changing climatic regimes. Environ Microb 22(4):1327–1340. https://doi.org/10.1111/1462-2920.14945

    Article  CAS  Google Scholar 

  37. Zhang GL, Zhu YG, Fu BJ (2003) Quality changes of soils in urban and suburban areas and its eco-environmental impacts: A review. Acta Ecol Sin 23(3):539–546. https://doi.org/10.3321/j.issn:1000-0933.2003.03.018

    Article  Google Scholar 

  38. Yu TH, Zhang NL, Yu S, Qu LY (2021) The characteristics of soil fungal community and effect factors under common tree species in urban parks of Beijing. Acta Ecol Sin 41(5):1835–1845. https://doi.org/10.5846/stxb202005121202

    Article  CAS  Google Scholar 

  39. Xu HJ, Li S, Su JQ, Nie SA, Gibson V, Li H, Zhu YG (2014) Does urbanization shape bacterial community composition in urban park soils? A case study in 16 representative Chinese cities based on the pyrosequencing method. FEMS Microbiol Ecol 87(1):182–192. https://doi.org/10.1111/1574-6941.12215

    Article  CAS  PubMed  Google Scholar 

  40. Jiao S, Xu Y, Zhang J, Hao X, Lu Y (2019) Core microbiota in agricultural soils and their potential associations with nutrient cycling. mSystems 4(2):e00313-18. https://doi.org/10.1128/mSystems.00313-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aronson MF, La Sorte FA, Nilon CH, Katti M, Goddard MA, Lepczyk CA, Winter M (2014) A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. P Roy Soc B-Biol Sci 281(1780):20133330. https://doi.org/10.1098/rspb.2013.3330

    Article  Google Scholar 

  42. Lyu LC, Sun F, Ru H (2019) Innovation-based urbanization: Evidence from 270 cities at the prefecture level or above in China. J Geogr Sci 29(008):1283–1299. https://doi.org/10.1007/s11442-019-1659-1

    Article  Google Scholar 

  43. Bao SD (2000) Agrochemical analysis of soil. Agricultural Press, Beijing, pp 30–83

    Google Scholar 

  44. Guan SY (1986) Soil enzymes and their research methods. Journal of Natural Resources. Agriculture Press, Beijing, pp 294–297

    Google Scholar 

  45. De Martonne E (1926) Une nouvelle fonction climatologique: L’indice d’aridite [A new climatological function: the aridity index]. La Meteorologie 2:449–458

    Google Scholar 

  46. Zheng W, Zhao Z, Lv F, Wang R, Wang Z, Zhao Z, Li Z, Zhai B (2021) Assembly of abundant and rare bacterial and fungal sub-communities in different soil aggregate sizes in an apple orchard treated with cover crop and fertilizer. Soil Biol Biochem 156(1):108222. https://doi.org/10.1016/j.soilbio.2021.108222

    Article  CAS  Google Scholar 

  47. Ferrenberg S, O’Neill SP, Knelman JE, Todd B, Duggan S, Bradley D, Robinson T, Schmidt SK, Townsend AR, Wislliams MW, Cleveland CC, Melbourne BA, Jiang L, Nemergut DR (2013) Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J 7(6):1102–1111. https://doi.org/10.1038/ismej.2013.11

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xun W, Li W, Xiong W, Ren Y, Liu Y, Miao Y, Zhang R (2019) Diversity triggered deterministic bacterial assembly constrains community functions. Nat Commun 10(1):1–10. https://doi.org/10.1038/s41467-019-11787-5

    Article  CAS  Google Scholar 

  49. Yeh YC, Peres-Neto PR, Huang SW, Lai YC, Tu CY, Shiah FK, Gong GC, Hsieh CH (2015) Determinism of bacterial metacommunity dynamics in the southern East China Sea varies depending on hydrography. Ecography 38(2):198–212. https://doi.org/10.1111/ecog.00986

    Article  Google Scholar 

  50. Martiny JB, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreas L, Reysenbach AL, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4(2):102–112. https://doi.org/10.1038/nrmicro1341

    Article  CAS  PubMed  Google Scholar 

  51. Chen T, Liu YX, Huang LQ (2022) ImageGP: an easy-to-use data visualization web server for scientific researchers. iMeta 1:e5. https://doi.org/10.1002/imt2.5

    Article  Google Scholar 

  52. Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, Gilbert JA (2014) Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. MBio 5(4):e01371-e1414. https://doi.org/10.1128/mBio.01371-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Russo D, Ancillotto L (2015) Sensitivity of bats to urbanization: A review. Mamm Biol 80(3):205–212. https://doi.org/10.1016/j.mambio.2014.10.003

    Article  PubMed  Google Scholar 

  54. Du S, Dini-Andreote F, Zhang N, Liang C, Yao Z, Zhang H, Zhang D (2020) Divergent co-occurrence patterns and assembly processes structure the abundant and rare bacterial communities in a salt marsh ecosystem. Appl Environ Microb 86(13):e00322-e420. https://doi.org/10.1128/AEM.00322-20

    Article  CAS  Google Scholar 

  55. Pan H, Gao H, Peng Z, Chen B, Chen S, Liu Y, Jiao S (2022) Aridity threshold induces abrupt change of soil abundant and rare bacterial biogeography in dryland ecosystems. Msystems 7(1):e01309-e1321. https://doi.org/10.1128/msystems.01309-21

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bahram M, Kohout P, Anslan S, Harend H, Abarenkov K, Tedersoo L (2016) Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME J 10(4):885–896. https://doi.org/10.1038/ismej.2015.164

    Article  PubMed  Google Scholar 

  57. Fodelianakis S, Lorz A, Valenzuela-Cuevas A, Barozzi A, Booth JM, Daffonchio D (2019) Dispersal homogenizes communities via immigration even at low rates in a simplified synthetic bacterial meta community. Nat Commun 10(1):1314. https://doi.org/10.1038/s41467-019-09306-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, Knelman JE, Darcy JL, Lynch RC, Wickey P, Ferrenberg S (2013) Patterns and processes of microbial community assembly. Microbiol Mol Biol R 77(3):342–356. https://doi.org/10.1128/MMBR.00051-12

    Article  Google Scholar 

  59. Hu W, Ran J, Dong L, Du Q, Ji M, Yao S, Sun Y, Gong C, Hou Q, Gong H, Chen R, Lu J, Xie S, Wang Z, Huang H, Li X, Xiong J, Xia R, Wei M, Zhao D, Zhang Y, Li J, Yang H, Wang X, Deng Y, Sun Y, Li H, Zhang L, Chu Q, Li X, Aqeel M, Manan A, Akram MA, Liu X, Li R, Li F, Hou C, Liu J, He JS, An L, Bardgett RD, Schmid B, Deng J (2021) Aridity-driven shift in biodiversity soil multi functionality relationships. Nat Commun 12(1):5350. https://doi.org/10.1038/s41467-021-25641-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Peng ZH, Wang ZF, Liu Y, Yang TY, Chen WM, Wei GH, Jiao S (2021) Soil phosphorus determines the distinct assembly strategies for abundant and rare bacterial communities during successional reforestation. Soil Ecol Lett 3:342–355. https://doi.org/10.1007/s42832-021-0109-z

    Article  CAS  Google Scholar 

  61. Logares R, Audic S, Bass D, Bittner L, Boutte C, Christen R, Claverie JM, Decelle J, Dolan JR, Dunthorn M, Edvardsen B, Gobet A, Kooistra WH, Mahe F, Not F, Ogata H, Pawlowski J, Pernice MC, Romac S, Shalchian TK, Simon N, Stoeck T, Santini S, Siano R, Wincker P, Zingone A, Richards TA, de Vargas C, Massana R (2014) Patterns of rare and abundant marine microbial eukaryotes. Curr Biol 24(8):813–821. https://doi.org/10.1016/j.cub.2014.02.050

    Article  CAS  PubMed  Google Scholar 

  62. Chen RR, Zhong LH, Jing ZW, Guo ZY, Li ZP, Lin XG, Feng YZ (2017) Fertilization decreases compositional variation of paddy bacterial community across geographical gradient. Soil Biol Biochem 114:181–188. https://doi.org/10.1016/j.soilbio.2017.07.013

    Article  CAS  Google Scholar 

  63. Feng Y, Chen R, Stegen JC, Guo Z, Zhang J, Li Z, Lin X (2018) Two key features influencing community assembly processes at regional scale: initial state and degree of change in environmental conditions. Mol Ecol 27(24):5238–5251. https://doi.org/10.1111/mec.14914

    Article  PubMed  Google Scholar 

  64. Lupatini M, Suleiman AKA, Jacques RJS, Lemos LN, Pylro VS, Van Veen JA, Kuramae EE, Roesch LFW (2019) Moisture is more important than temperature for assembly of both potentially active and whole prokaryotic communities in subtropical grassland. Microb Ecol 77(2):460–470. https://doi.org/10.1007/s00248-018-1310-1

    Article  PubMed  Google Scholar 

  65. Paz-Ferreiro J, Fu S (2016) Biological indices for soil quality evaluation: perspectives and limitations. Land Degrad Dev 27:14–25. https://doi.org/10.1002/ldr.2262

    Article  Google Scholar 

  66. Ren YL, Ge W, Dong CB, Wang HY, Zhao S, Li CL, Xu JH, Liang ZQ, Han YF (2023) Specialist species of fungi and bacteria are more important than the intermediate and generalist species in near-urban agricultural soils. Appl Soil Ecol 188:104894. https://doi.org/10.1016/j.apsoil.2023.104894

    Article  Google Scholar 

  67. Zhang HJ, Wang K, Shen LX, Chen HP, Hou FR, Zhou XY, Zhang D, Zhu XY (2018) Microbial community dynamics and assembly follow trajectories of an early-spring diatom bloom in a semienclosed bay. Appl Environ Microb 84(18):e01000–e01018. https://doi.org/10.1128/AEM.01000-18

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by The Natural Science Foundation of China [No.32060011, 32160007]; “Hundred” Talent Projects of Guizhou Province [Qian Ke He [2020] 6005]; the Key Areas of Research and Development Program of Guangdong Province [No. 2018B020205003]; Construction Program of Biology First-class Discipline in Guizhou [GNYL [2017]009].

Author information

Authors and Affiliations

Authors

Contributions

YH and YZ: conceptualization and funding acquisition. YR, QS, WG, XL, and HW: data acquisition. CD, QS, and WG: formal analysis. YR: writing the first draft. YH, YZ, and DSK: writing, reviewing, and editing the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yanfeng Han.

Ethics declarations

Conflicts of interest

All authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1605 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Shao, Q., Ge, W. et al. Assembly Processes and Biogeographical Characteristics of Soil Bacterial Sub-communities of Different Habitats in Urban Green Spaces. Curr Microbiol 80, 309 (2023). https://doi.org/10.1007/s00284-023-03428-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03428-4

Navigation