Skip to main content

Advertisement

Log in

Genetic Analysis of LigA, LipL32, Loa22, and OmpL1 Antigens from Leptospira spp. Sejroe Serogroup: How Close We Are To a Vaccine Against Bovine Leptospirosis?

  • Original Paper
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Bovine leptospirosis has as main causative agents Leptospira spp. from Sejroe serogroup. Vaccination is a crucial step to control this infection. The use of conserved proteins among Leptospira spp. is of great importance for a protective immune response. The aim of the present study is to genetically analyze antigens of Leptospira spp. from Sejroe serogroup strains isolated from cattle for a preliminary evaluation of vaccine candidates. Genes associated with antigenicity—LigA, LipL32, Loa22, and OmpL1—were analyzed through bioinformatic and immunoinformatic tools. Despite high diversity observed in strains, on an amino acid level, highly conserved regions were observed (> 90%), particularly in LipL32 gene. Moreover, highly conserved amino acid regions (> 30 aa) were observed in all genes, regardless of species, geographical origin or biological source of isolation. Superposed structures of protein fragments including all the predicted MHC-II and B-Cell epitopes were demonstrated. Results presented herein are preliminary, but a fundamental step towards the development of an efficient vaccine against bovine leptospirosis, a silent but enormously concerning disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ellis WA (2015) Animal leptospirosis. Curr Top Microbiol Immunol 387:99–137. https://doi.org/10.1007/978-3-662-45059-8_6

    Article  CAS  PubMed  Google Scholar 

  2. Libonati HA, Santos GB, Souza GN, Brandão FZ, Lilenbaum W (2018) Leptospirosis is strongly associated to estrus repetition on cattle. Trop Anim Health Prod 50:1625–1629. https://doi.org/10.1007/s11250-018-1604-9

    Article  CAS  PubMed  Google Scholar 

  3. Loureiro AP, Lilenbaum W (2020) Genital bovine leptospirosis: a new look for an old disease. Theriogenology 141:41–47. https://doi.org/10.1016/j.theriogenology.2019.09.011

    Article  PubMed  Google Scholar 

  4. Loureiro AP, Pestana C, Medeiros MA, Lilenbaum W (2017) High frequency of leptospiral vaginal carriers among slaughtered cows. Anim Reprod Sci 178:50–54. https://doi.org/10.1016/j.anireprosci.2017.01.008

    Article  CAS  PubMed  Google Scholar 

  5. Martins G, Lilenbaum W (2017) Control of bovine leptospirosis: aspects for consideration in a tropical environment. Res Vet Sci 112:156–160. https://doi.org/10.1016/j.rvsc.2017.03.021

    Article  CAS  PubMed  Google Scholar 

  6. Lilenbaum W, Martins G (2014) Leptospirosis in cattle: a challenging scenario for the understanding of the epidemiology. Transbound Emerg Dis 61:63–68. https://doi.org/10.1111/tbed.12233

    Article  PubMed  Google Scholar 

  7. Plunkett AH, Graham TW, Famula TR, Oberbauer AM (2013) Effect of a monovalent vaccine against Leptospira borgpetersenii serovar Hardjo strain hardjobovis on fertility in Holstein dairy cattle. J Am Vet Med Assoc 242:1564–1572. https://doi.org/10.2460/javma.242.11.1564

    Article  PubMed  Google Scholar 

  8. Adler B (2015) Vaccines against leptospirosis. Curr Top Microbiol Immunol 387:251–272. https://doi.org/10.1007/978-3-662-45059-8_10

    Article  CAS  PubMed  Google Scholar 

  9. Seenichamy A, Bahaman AR, Mutalib AR, Khairani-Bejo S (2014) Production and characterization of a polyclonal antibody of anti-rLipL21-IgG against leptospira for early detection of acute leptospirosis. Biomed Res Int 2014:592858. https://doi.org/10.1155/2014/592858

    Article  PubMed  PubMed Central  Google Scholar 

  10. King AM, Bartpho T, Sermswan RW, Bulach DM, Eshghi A, Picardeau M, Adler B, Murray GL (2013) Leptospiral outer membrane protein LipL41 is not essential for acute leptospirosis but requires a small chaperone protein, lep, for stable expression. Infect Immun 81(8):2768–2776. https://doi.org/10.1128/IAI.00531-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haake DA, Matsunaga J (2021) Leptospiral immunoglobulin-like domain proteins: roles in virulence and immunity. Front Immunol 11:579907. https://doi.org/10.3389/fimmu.2020.579907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Govindan P, Manjusha P, Saravanan KM, Natesan V, Salmen SH, Alfarraj S, Wainwright M, Shakila H (2021) Expression and preliminary characterization of the potential vaccine candidate LipL32 of leptospirosis. Appl Nanosci 30:1–15. https://doi.org/10.1007/s13204-021-02097-8

    Article  CAS  Google Scholar 

  13. Umthong S, Buaklin A, Jacquet A, Sangjun N, Kerdkaew R, Patarakul K, Palaga T (2015) Immunogenicity of a DNA and recombinant protein vaccine combining LipL32 and Loa22 for leptospirosis using chitosan as a delivery system. J Microbiol Biotechnol 25:526–536. https://doi.org/10.4014/jmb.1408.08007

    Article  CAS  PubMed  Google Scholar 

  14. Dezhbord M, Esmaelizad M, Khaki P, Fotohi F, Zarehparvar Moghaddam A (2014) Molecular identification of the ompL1 gene within Leptospira interrogans standard serovars. J Infect Dev Ctries 8(6):688–693. https://doi.org/10.3855/jidc.3174

    Article  PubMed  Google Scholar 

  15. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):29478. https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  Google Scholar 

  16. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  17. Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leigh JW, Bryant D (2015) PopART: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116. https://doi.org/10.1111/2041-210X.12410

    Article  Google Scholar 

  19. Bandelt H, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

    Article  CAS  PubMed  Google Scholar 

  20. Ndengu M, Garine-Wichatitsky M, Pfukenyi DM, Tivapasi M, Mukamuri B, Matope G (2017) Assessment of community awareness and risk perceptions of zoonotic causes of abortion in cattle at three selected livestock-wildlife interface areas of Zimbabwe. Epidemiol Infect 6:1–16. https://doi.org/10.1017/S0950268817000097

    Article  Google Scholar 

  21. Di Azevedo MIN, Lilenbaum W (2021) An overview on the molecular diagnosis of animal leptospirosis. Lett Appl Microbiol 72:496–508. https://doi.org/10.1111/lam.13442

    Article  CAS  PubMed  Google Scholar 

  22. Malmström J, Beck M, Schmidt A, Lange V, Deutsch EW, Aebersold R (2009) Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature 460:762–765. https://doi.org/10.1038/nature08184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Murray GL (2013) The lipoprotein LipL32, an enigma of leptospiral biology. Vet Microbiol 162:305–314. https://doi.org/10.1016/j.vetmic.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  24. Cullen PA, Xu X, Matsunaga J, Sanchez Y, Ko AI, Haake DA, Adler B (2005) Surfaceome of Leptospira spp. Infect Immun 73:4853–4863. https://doi.org/10.1128/IAI.73.8.4853-4863.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lucas DS, Cullen PA, Lo M, Srikram A, Sermswan RW, Adler B (2011) Recombinant LipL32 and LigA from Leptospira are unable to stimulate protective immunity against leptospirosis in the hamster model. Vaccine 29(18):3413–3418. https://doi.org/10.1016/j.vaccine.2011.02.084

    Article  CAS  PubMed  Google Scholar 

  26. Grassmann AA, Félix SR, dos Santos CX, Amaral MG, Seixas Neto AC, Fagundes MQ, Seixas FK, da Silva EF, Conceição FR, Dellagostin AO (2012) Protection against lethal leptospirosis after vaccination with LipL32 coupled or coadministered with the B subunit of Escherichia coli heat-labile enterotoxin. Clin Vaccine Immunol 19(5):740–745. https://doi.org/10.1128/CVI.05720-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luo D, Xue F, Ojcius DM, Zhao J, Mao Y, Li L, Lin X, Yan J (2009) Protein typing of major outer membrane lipoproteins from Chinese pathogenic Leptospira spp. and characterization of their immunogenicity. Vaccine 28(1):243–255. https://doi.org/10.1016/j.vaccine.2009.09.089

    Article  CAS  PubMed  Google Scholar 

  28. Lucas DS, Lo M, Bulach DM, Quinsey NS, Murray GL, Allen A, Adler B (2014) Recombinant LipL32 stimulates interferon-gamma production in cattle vaccinated with a monovalent Leptospira borgpetersenii serovar Hardjo subtype Hardjobovis vaccine. Vet Microbiol 169(3–4):163–170. https://doi.org/10.1016/j.vetmic.2013.12.016

    Article  CAS  Google Scholar 

  29. da Rosa MC, Martins G, Rocha BR, Correia L, Ferronato G, Lilenbaum W, Dellagostin OA (2019) Assessment of the immunogenicity of the leptospiral LipL32, LigAni, and LigBrep recombinant proteins in the sheep model. Comp Immunol Microbiol Infect Dis 65:176–180. https://doi.org/10.1016/j.cimid.2019.05.012

    Article  PubMed  Google Scholar 

  30. Choy HA, Kelley MM, Chen TL, Møller AK, Matsunaga J, Haake DA (2007) Physiological osmotic induction of Leptospira interrogans adhesion: LigA and LigB bind extracellular matrix proteins and fibrinogen. Infect Immun 75(5):2441–2450. https://doi.org/10.1128/IAI.01635-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Faisal SM, Yan W, Chen CS, Palaniappan RU, McDonough SP, Chang YF (2008) Evaluation of protective immunity of Leptospira immunoglobulin like protein A (LigA) DNA vaccine against challenge in hamsters. Vaccine 26(2):277–287. https://doi.org/10.1016/j.vaccine.2007.10.029

    Article  CAS  PubMed  Google Scholar 

  32. Faisal SM, Yan W, McDonough SP, Chang CF, Pan MJ, Chang YF (2009) Leptosome-entrapped leptospiral antigens conferred significant higher levels of protection than those entrapped with PC-liposomes in a hamster model. Vaccine 27(47):6537–6545. https://doi.org/10.1016/j.vaccine.2009.08.051

    Article  CAS  PubMed  Google Scholar 

  33. Lourdault K, Wang LC, Vieira A, Matsunaga J, Melo R, Lewis MS, Haake DA, Gomes-Solecki M (2014) Oral immunization with Escherichia coli expressing a lipidated form of LigA protects hamsters against challenge with Leptospira interrogans serovar Copenhageni. Infect Immun 82(2):893–902. https://doi.org/10.1128/IAI.01533-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Matsunaga J, Barocchi MA, Croda J, Young TA, Sanchez Y, Siqueira I, Bolin CA, Reis MG, Riley LW, Haake DA, Ko AI (2003) Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily. Mol Microbiol 49(4):929–945. https://doi.org/10.1046/j.1365-2958.2003.03619.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maneewatch S, Tapchaisri P, Sakolvaree Y, Klaysing B, Tongtawe P, Chaisri U, Songserm T, Wongratanacheewin S, Srimanote P, Chongsa-nguanz M, Chaicumpa W (2007) OmpL1 DNA vaccine cross-protects against heterologous Leptospira spp challenge. Asian Pac J Allergy Immunol 25(1):75–82 (PMID: 17891923)

    CAS  PubMed  Google Scholar 

  36. Dhaliwal GS, Murray RD, Dobson H, Montgomery J, Ellis WA (1996) Presence of antigen and antibodies in serum and genital discharges of cows from dairy herds naturally infected with Leptospira interrogans serovar hardjo. Res Vet Sci 60(2):163–167. https://doi.org/10.1016/s0034-5288(96)90012-0

    Article  CAS  PubMed  Google Scholar 

  37. Dhaliwal GS, Murray RD, Dobson H, Montgomery J, Ellis WA, Baker JR (1996) Presence of antigen and antibodies in serum and genital discharges of heifers after experimental intrauterine inoculation with Leptospira interrogans serovar hardjo. Res Vet Sci 60(2):157–162. https://doi.org/10.1016/s0034-5288(96)90011-9

    Article  CAS  PubMed  Google Scholar 

  38. Garba B, Bahaman AR, Zakaria Z, Bejo SK, Mutalib AR, Bande F, Suleiman N (2018) Antigenic potential of a recombinant polyvalent DNA vaccine against pathogenic leptospiral infection. Microb Pathog 124:136–144. https://doi.org/10.1016/j.micpath.2018.08.028

    Article  CAS  PubMed  Google Scholar 

  39. Barazzone GC, Teixeira AF, Azevedo BOP, Damiano DK, Oliveira MP, Nascimento ALTO, Lopes APY (2022) revisiting the development of vaccines against pathogenic leptospira: innovative approaches, present challenges, and future perspectives. Front Immunol 12:760291. https://doi.org/10.3389/fimmu.2021.760291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coutinho ML, Choy HA, Kelley MM, Matsunaga J, Babbitt JT, Lewis MS, Aleixo JA, Haake DA (2011) A LigA three-domain region protects hamsters from lethal infection by Leptospira interrogans. PLoS Negl Trop Dis 5(12):e1422. https://doi.org/10.1371/journal.pntd.0001422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Forster KM, Hartwig DD, Oliveira TL, Bacelo KL, Schuch R, Amaral MG, Dellagostin AO (2015) DNA prime-protein boost based vaccination with a conserved region of leptospiral immunoglobulin-like A and B proteins enhances protection against leptospirosis. Mem Inst Oswaldo Cruz 110(8):989–995. https://doi.org/10.1590/0074-02760150222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Parthiban M, Kumar SS, Balachandran C, Kumanan K, Aarthi KS, Nireesha G (2015) Comparison of immunoprotection of leptospira recombinant proteins with conventional vaccine in experimental animals. Indian J Exp Biol 53(12):779–785 (PMID: 26742322)

    CAS  PubMed  Google Scholar 

  43. Fernandes LGV, Teixeira AF, Filho AFS, Souza GO, Vasconcellos SA, Heinemann MB, Romero EC, Nascimento ALTO (2017) Immune response and protective profile elicited by a multi-epitope chimeric protein derived from Leptospira interrogans. Int J Infect Dis 57:61–69. https://doi.org/10.1016/j.ijid.2017.01.032

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Program for Technological Development in Tools for Health-PDTIS/FIOCRUZ for the use of its facilities for DNA sequencing, crucial for the development of the present work.

Funding

This study was funded by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado de Rio de Janeiro (FAPERJ), Grant Number E-26/202.369/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Isabel Nogueira Di Azevedo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

284_2023_3414_MOESM1_ESM.tif

Supplementary file1 (TIF 947 KB)—Supplementary Figure 1 ML-trees based on amino acid sequences of LigA (A), LipL32 (B), Loa22 (C) and OmpL1 (D) genes. Sequences from strains isolated from vaginal fluid are indicated by red arrows

Supplementary file2 (DOCX 15 KB)

Supplementary file3 (DOCX 29 KB)

Supplementary file4 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Azevedo, M.I.N., Borges, A.L.d., Kremer, F. et al. Genetic Analysis of LigA, LipL32, Loa22, and OmpL1 Antigens from Leptospira spp. Sejroe Serogroup: How Close We Are To a Vaccine Against Bovine Leptospirosis?. Curr Microbiol 80, 310 (2023). https://doi.org/10.1007/s00284-023-03414-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03414-w

Navigation