Skip to main content
Log in

The Presence of Virulent and Multidrug-Resistant Clones of Carbapenem-Resistant Klebsiella pneumoniae in Southeastern Brazil

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) represents an urgent threat to global public health due to the limited therapeutic options available to control this pathogen. This study aims to analyze the molecular epidemiology, antimicrobial resistance and virulence profile of CRKP isolated from patients at hospitals in Southeastern Brazil. KPC and other beta-lactamase genes were detected in all strains, which were also multidrug-resistant (MDR). In addition, 11 strains showed resistance to last-resort antimicrobials, such as colistin and tigecycline. MLST analysis revealed eight different sequence types (ST11, ST37, ST147, ST340, ST384, ST394, ST437, and ST628), being two (ST628 and ST394) reported for the first time in Brazil. Strains belonging to the clonal complex 258 (CC258) “high-risk clones” were prevalent in this study. The Galleria mellonella model showed the emergence of virulent CRKP strains in the healthcare environment and, suggests that colistin-resistant strains were associated with higher virulence. This study shows the presence of virulent CRKP-MDR strains in hospitals across Southeastern Brazil, and draws attention to the presence of highly virulent emerging CRKP-MDR ST628 strains, showing that virulent and resistant clones can emerge quickly, requiring constant monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data Availability

Not applicable.

References

  1. Yang X, Dong N, Chan EWC et al (2021) Carbapenem resistance-encoding and virulence-encoding conjugative plasmids in Klebsiella pneumoniae. Trends Microbiol 29:65–83. https://doi.org/10.1016/j.tim.2020.04.012

    Article  CAS  PubMed  Google Scholar 

  2. Lee CR, Lee JH, Park KS et al (2016) Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol 7:895. https://doi.org/10.3389/fmicb.2016.00895

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bush K, Bradford PA (2020) Epidemiology of β-lactamase-producing pathogens. Clin Microbiol Rev 33:e00047-e119. https://doi.org/10.1128/CMR.00047-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. World Health Organization (2019) Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. Accessed 19 June 2023

  5. Abril D, Vergara E, Palacios D et al (2021) Within patient genetic diversity of blaKPC harboring Klebsiella pneumoniae in a Colombian hospital and identification of a new NTEKPC platform. Sci Rep 11:21409. https://doi.org/10.1038/s41598-021-00887-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Petrosillo N, Taglietti F, Granata G (2019) Treatment options for colistin resistant Klebsiella pneumoniae: present and future. J Clin Med 8:1–22. https://doi.org/10.3390/jcm8070934

    Article  CAS  Google Scholar 

  7. Tamma PD, Aitken SL, Bonomo RA et al (2022) Infectious diseases society of america 2022 guidance on the treatment of extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P). Clin Infect Dis 75:187–212. https://doi.org/10.1093/cid/ciac268

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gu D, Dong N, Zheng Z et al (2018) A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis 18:37–46. https://doi.org/10.1016/S1473-3099(17)30489-9

    Article  PubMed  Google Scholar 

  9. EUCAST (2016) Breakpoint tables for interpretation of MICs and zone diameters. Accessed 24 June 2023

  10. Dallenne C, da Costa A, Decré D et al (2010) Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother 65:490–495. https://doi.org/10.1093/jac/dkp498

    Article  CAS  PubMed  Google Scholar 

  11. Poirel L, Walsh TR, Cuvillier V, Nordmann P (2011) Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 70:119–123. https://doi.org/10.1016/j.diagmicrobio.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  12. Durmaz R, Otlu B, Koksal F et al (2009) The optimization of a rapid pulsed-field gel electrophoresis protocol for the typing of Acinetobacter baumannii, Escherichia coli and Klebsiella spp. Jpn J Infect Dis 62:372–377

    Article  CAS  PubMed  Google Scholar 

  13. Compain F, Babosan A, Brisse S et al (2014) Multiplex PCR for detection of seven virulence factors and K1/K2 capsular serotypes of Klebsiella pneumoniae. J Clin Microbiol 52:4377–4380. https://doi.org/10.1128/JCM.02316-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brisse S, Fevre C, Passet V et al (2009) Virulent clones of Klebsiella pneumoniae: Identification and evolutionary scenario based on genomic and phenotypic characterization. PLoS ONE 4:e4982. https://doi.org/10.1371/journal.pone.0004982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ballén V, Gabasa Y, Ratia C et al (2021) Antibiotic resistance and virulence profiles of Klebsiella pneumoniae strains isolated from different clinical sources. Front Cell Infect Microbiol 11:738223. https://doi.org/10.3389/fcimb.2021.738223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pereira MF, Rossi CC (2020) Overview of rearing and testing conditions and a guide for optimizing Galleria mellonella breeding and use in the laboratory for scientific purposes. J Pathol Microbiol Immunol 128:607–620. https://doi.org/10.1111/apm.13082

    Article  Google Scholar 

  17. Mead GP, Ratcliffe NA, Renwrantp LR (1986) The separation of insect haemocyte types on percoll gradients; methodology and problems. J Insect Physiol 32(2):167–177

    Article  Google Scholar 

  18. Yao B, Xiao X, Wang F et al (2015) Clinical and molecular characteristics of multi-clone carbapenem-resistant hypervirulent (hypermucoviscous) Klebsiella pneumoniae isolates in a tertiary hospital in Beijing, China. Int J Infect Dis 37:107–112. https://doi.org/10.1016/j.ijid.2015.06.023

    Article  PubMed  Google Scholar 

  19. Magiorakos AP, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  PubMed  Google Scholar 

  20. Ben-Chetrit E, Mc Gann P, Maybank R et al (2021) Colistin-resistant Klebsiella pneumoniae bloodstream infection: old drug, bad bug. Arch Microbiol 203:2999–3006. https://doi.org/10.1007/s00203-021-02289-4

    Article  CAS  PubMed  Google Scholar 

  21. Rocha VFD, Barbosa MS, Leal HF et al (2022) Prolonged outbreak of carbapenem and colistin-resistant Klebsiella pneumoniae at a large tertiary hospital in Brazil. Front Microbiol 13:831770. https://doi.org/10.3389/fmicb.2022.831770

    Article  PubMed  PubMed Central  Google Scholar 

  22. Conceição-Neto OC, da Costa BS, da Pontes L et al (2022) Polymyxin resistance in clinical isolates of K. pneumoniae in Brazil: update on molecular mechanisms, clonal dissemination and relationship with KPC-producing strains. Front Cell Infect Microbiol 12:898125. https://doi.org/10.3389/fcimb.2022.898125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chang D, Sharma L, Dela Cruz CS, Zhang D (2021) Clinical epidemiology, risk factors, and control strategies of Klebsiella pneumoniae infection. Front Microbiol 12:750662. https://doi.org/10.3389/fmicb.2021.750662

    Article  PubMed  PubMed Central  Google Scholar 

  24. Farhadi M, Ahanjan M, Goli HR et al (2021) High frequency of multidrug-resistant (MDR) Klebsiella pneumoniae harboring several β-lactamase and integron genes collected from several hospitals in the north of Iran. Ann Clin Microbiol Antimicrob 20:70. https://doi.org/10.1186/s12941-021-00476-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aires CAM, Pereira PS, Rocha-De-Souza CM et al (2020) Population structure of KPC-2-producing Klebsiella pneumoniae isolated from surveillance rectal swabs in Brazil. Microb Drug Resist 26:652–660. https://doi.org/10.1089/mdr.2019.0166

    Article  CAS  PubMed  Google Scholar 

  26. Aires CAM, Rybak MJ, Yim J et al (2017) Genomic characterization of an extensively drug-resistant KPC-2-producing Klebsiella pneumoniae ST855 (CC258) only susceptible to ceftazidime-avibactam isolated in Brazil. Diagn Microbiol Infect Dis 89:324–327. https://doi.org/10.1016/j.diagmicrobio.2017.08.017

    Article  CAS  PubMed  Google Scholar 

  27. Liu Z, Chen R, Xu P et al (2021) Characterization of a blaNDM-1-bearing IncHI5-Like plasmid from Klebsiella pneumoniae of infant origin. Front Cell Infect Microbiol 11:738053. https://doi.org/10.3389/fcimb.2021.738053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quinones D, Aránzazu V, Rodríguez-Banõs M et al (2014) High clonal diversity in a non-outbreak situation of clinical ESBL-producing Klebsiella pneumoniae isolates in the First National Surveillance Program in Cuba. Microb Drug Resist 20:45–51. https://doi.org/10.1089/mdr.2013.0021

    Article  CAS  PubMed  Google Scholar 

  29. Dortet L, Brechard L, Grenet K et al (2013) Sri Lanka, another country from the Indian subcontinent with NDM-1-producing Enterobacteriaceae. J Antimicrob Chemother 68:2172–2173. https://doi.org/10.1093/jac/dkt145

    Article  CAS  PubMed  Google Scholar 

  30. Emeraud C, Figueiredo S, Bonnin RA et al (2021) Outbreak of CTX-M-15 extended-spectrum β-lactamase-producing Klebsiella pneumoniae ST394 in a French intensive care unit dedicated to COVID-19. Pathogens 10:1426. https://doi.org/10.3390/pathogens10111426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mshana SE, Fritzenwanker M, Falgenhauer L et al (2015) Molecular epidemiology and characterization of an outbreak causing Klebsiella pneumoniae clone carrying chromosomally located bla (CTX-M-15) at a German University-Hospital. BMC Microbiol 15:122. https://doi.org/10.1186/s12866-015-0460-2

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xiao S, Wang S, Wu W et al (2017) The resistance phenotype and molecular epidemiology of Klebsiella pneumoniae in bloodstream infections in Shanghai, China, 2012–2015. Front Microbiol 8:250. https://doi.org/10.3389/fmicb.2017.00250

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hall JM, Ingram PR, Reilly LCO, Inglis TJJ (2016) Temporal flux in beta-lactam resistance among Klebsiella pneumoniae in Western Australia. J Med Microbiol 65:429–437. https://doi.org/10.1099/jmm.0.000242

    Article  CAS  PubMed  Google Scholar 

  34. Esposito EP, Cervoni M, Bernardo M et al (2018) Molecular epidemiology and virulence profiles of colistin-resistant Klebsiella pneumoniae blood isolates from the hospital agency “Ospedale dei Colli”, Naples, Italy. Front Microbiol 9:1463. https://doi.org/10.3389/fmicb.2018.01463

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cerqueira GC, Earl AM, Ernst CM et al (2017) Multi-institute analysis of carbapenem resistance reveals remarkable diversity, unexplained mechanisms, and limited clonal outbreaks. Proc Natl Acad Sci USA 114:1135–1140. https://doi.org/10.1073/pnas.1616248114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bruchmann S, Feltwell T, Parkhill J, Short FL (2020) Identifying virulence determinants of multidrug-resistant Klebsiella pneumoniae in Galleria mellonella. Pathog Dis 79:1–30. https://doi.org/10.1093/femspd/ftab009

    Article  CAS  Google Scholar 

  37. Insua JL, Llobet E, Moranta D et al (2013) Modeling Klebsiella pneumoniae pathogenesis by infection of the wax moth Galleria mellonella. Infect Immun 81:3552–3565. https://doi.org/10.1128/IAI.00391-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shon AS, Bajwa RPS, Russo TA (2013) Hypervirulent (hypermucoviscous) Klebsiella pneumoniae a new and dangerous breed. Virulence 4(2):107–118

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhu J, Yin X, Xi W et al (2017) Emergence of low virulent carbapenem-resistant hypermucoviscous Klebsiella pneumoniae in China. J Infect 75:469–472. https://doi.org/10.1016/j.jinf.2017.07.009

    Article  PubMed  Google Scholar 

Download references

Funding

National Council for Scientific and Technological Development—CNPq (Grant No. 432065/2018-0); Higher Education Improvement Coordination—Brazil (CAPES)—Finance Code 001; Research Productivity Scholarship Program at the University of the State of Minas Gerais (PQ/UEMG 10/2022).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [MB, MFP, RPS]; Methodology: [MB, MFP]; Formal analysis and investigation: [MB, MFP]; Writing—original draft preparation: [MB]; Writing—review and editing: [MB, MFP, RPS]; Funding acquisition: [RPS]; Supervision: [RPS]. All authors reviewed and approved the submitted version.

Corresponding author

Correspondence to Ricardo Pinto Schuenck.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare.

Ethical Approval

The present research was approved by the Human Research Ethics Committee of the Federal University of Espírito Santo under number nº 707.303.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 10 KB)

Supplementary file2 (XLSX 10 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borghi, M., Pereira, M.F. & Schuenck, R.P. The Presence of Virulent and Multidrug-Resistant Clones of Carbapenem-Resistant Klebsiella pneumoniae in Southeastern Brazil. Curr Microbiol 80, 286 (2023). https://doi.org/10.1007/s00284-023-03403-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03403-z

Navigation