Skip to main content
Log in

Frequency of B-Cell Subpopulations in Low Responders in Comparison with High Responders to Hepatitis B Vaccine Among Health Care Workers

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Vaccination is the most effective way to prevent Hepatitis B (HB) infection. The goal of vaccination is to induce immunological memory. Hence, determining the frequency of memory B-cell (MBC) subsets is an important indicator of vaccine efficacy. This study aimed to evaluate the frequency of different B-cell subpopulations and the expression of PD-1 on B-cell subsets in low responders (LR) and high responders (HR) to HB vaccine. According to our findings, the expression level of PD-1 was significantly higher on atypical MBC (atMBC) than that of naive B cell and classical MBC (cMBC) in LR and HR groups. Moreover, cMBCs had a significant higher PD-1 expression than naive B cells in LR group. No significant differences were found in the frequency of various B-cell subpopulations and the expression level of PD-1 on B-cell subsets between LR and HR groups. We observed a negative correlation between age and HBsAb titer and a positive correlation between age and PD-1 expression level on cMBC in LR group. It can be concluded that inadequate specific memory B-cell response, rather than total memory B-cell deficiency, may be implicated in low responsive rate to HB vaccine in healthy individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Code Availability

Not applicable.

References

  1. Lai A, Sagnelli C, Lo Presti A, Cella E, Angeletti S, Spoto S et al (2018) What is changed in HBV molecular epidemiology in Italy? J Med Virol 90(5):786–795. https://doi.org/10.1002/jmv.25027

    Article  PubMed  Google Scholar 

  2. Chemin I, Pujol FH (2022) Special issue: “updates on HBV infection”. Microorganisms 10(3): 580. https://doi.org/10.3390/microorganisms10030580

  3. Kumar M, Pahuja S, Khare P, Kumar A (2023) Current challenges and future perspectives of diagnosis of hepatitis B virus. Diagnostics (Basel) 13(3): 368. https://doi.org/10.3390/diagnostics13030368.

  4. Stasi C, Silvestri C, Voller F (2017) Emerging trends in epidemiology of hepatitis B virus infection. J Clin Transl Hepatol 5(3):272. https://doi.org/10.14218/JCTH.2017.00010

    Article  PubMed  PubMed Central  Google Scholar 

  5. Doedée A, Kannegieter N, Öztürk K, van Loveren H, Janssen R, Buisman A-M (2016) Higher numbers of memory B-cells and Th2-cytokine skewing in high responders to hepatitis B vaccination. Vaccine 34(19):2281–2289. https://doi.org/10.1016/j.vaccine.2015.12.027

    Article  CAS  PubMed  Google Scholar 

  6. Borzooy Z, Streinu-Cercel A, Mirshafiey A, Khamseh A, Mahmoudie MK, Navabi SS et al (2016) IL-17 and IL-22 genetic polymorphisms in HBV vaccine non-and low-responders among healthcare workers. Germs 6(1):14. https://doi.org/10.11599/germs.2016.1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kao J-H (2015) Hepatitis B vaccination and prevention of hepatocellular carcinoma. Best Pract Res Clin Gastroenterol 29(6):907–917. https://doi.org/10.1016/j.bpg.2015.09.011

    Article  PubMed  Google Scholar 

  8. Hummel IB, Zitzmann A, Erl M, Wenzel JJ, Jilg W (2016) Characteristics of immune memory 10–15 years after primary hepatitis B vaccination. Vaccine 34(5):636–642. https://doi.org/10.1016/j.vaccine.2015.12.033

    Article  CAS  Google Scholar 

  9. Seifert M, Küppers R (2016) Human memory B cells. Leukemia 30(12):2283–2292. https://doi.org/10.1038/leu.2016.226

    Article  CAS  PubMed  Google Scholar 

  10. Sebina I, Pepper M (2018) Humoral immune responses to infection: common mechanisms and unique strategies to combat pathogen immune evasion tactics. Curr Opin Immunol 51:46–54. https://doi.org/10.1016/j.coi.2018.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Peeridogaheh H, Meshkat Z, Habibzadeh S, Arzanlou M, Shahi JM, Rostami S et al (2018) Current concepts on immunopathogenesis of hepatitis B virus infection. Virus Res 245:29–43. https://doi.org/10.1016/j.virusres.2017.12.007

    Article  CAS  PubMed  Google Scholar 

  12. Bertoletti A, Ferrari C (2016) Adaptive immunity in HBV infection. J Hepatol 64(1):S71–S83. https://doi.org/10.1016/j.jhep.2016.01.026

    Article  CAS  PubMed  Google Scholar 

  13. Kusumoto S, Tanaka Y, Ueda R, Mizokami M (2011) Reactivation of hepatitis B virus following rituximab-plus-steroid combination chemotherapy. J Gastroenterol 46(1):9–16. https://doi.org/10.1007/s00535-010-0331-4

    Article  CAS  PubMed  Google Scholar 

  14. Imkeller K, Wardemann H (2018) Assessing human B cell repertoire diversity and convergence. Immunol Rev 284(1):51–66. https://doi.org/10.1111/imr.12670

    Article  CAS  PubMed  Google Scholar 

  15. Illingworth J, Butler NS, Roetynck S, Mwacharo J, Pierce SK, Bejon P et al (2013) Chronic exposure to Plasmodium falciparum is associated with phenotypic evidence of B and T cell exhaustion. J Immunol 190(3):1038–1047. https://doi.org/10.4049/jimmunol.1202438

    Article  CAS  PubMed  Google Scholar 

  16. Hu Z, Luo Z, Wan Z, Wu H, Li W, Zhang T et al (2015) HIV-associated memory B cell perturbations. Vaccine 33(22):2524–2529. https://doi.org/10.1016/j.vaccine.2015.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Salimzadeh L, Le Bert N, Dutertre C-A, Gill US, Newell EW, Frey C et al (2018) PD-1 blockade partially recovers dysfunctional virus-specific B cells in chronic hepatitis B infection. J Clin Investig 128(10):4573–4587. https://doi.org/10.1172/JCI121957

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rath S, Devey M (1988) IgG subclass composition of antibodies to HBsAg in circulating immune complexes from patients with hepatitis B virus infections. Clin Exp Immunol 72(1):164–167

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pupovac A, Good-Jacobson KL (2017) An antigen to remember: regulation of B cell memory in health and disease. Curr Opin Immunol 45:89–96. https://doi.org/10.1016/j.coi.2017.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Portugal S, Obeng-Adjei N, Moir S, Crompton PD, Pierce SK (2017) Atypical memory B cells in human chronic infectious diseases: an interim report. Cell Immunol 321:18–25. https://doi.org/10.1016/j.cellimm.2017.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Akkaya M, Kwak K, Pierce SK (2020) B cell memory: building two walls of protection against pathogens. Nat Rev Immunol 20(4):229–238. https://doi.org/10.1038/s41577-019-0244-2

    Article  CAS  PubMed  Google Scholar 

  22. Burton AR, Maini MK (2021) Human antiviral B cell responses: emerging lessons from hepatitis B and COVID-19. Immunol Rev 299(1):108–117. https://doi.org/10.1111/imr.12953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Milich DR, Leroux-Roels GG (2003) Immunogenetics of the response to HBsAg vaccination. Autoimmun Rev 2(5):248–257. https://doi.org/10.1016/s1568-9972(03)00031-4

    Article  CAS  PubMed  Google Scholar 

  24. Rosado MM, Scarsella M, Pandolfi E, Cascioli S, Giorda E, Chionne P et al (2011) Switched memory B cells maintain specific memory independently of serum antibodies: the hepatitis B example. Eur J Immunol 41(6):1800–1808. https://doi.org/10.1002/eji.201041187

    Article  CAS  PubMed  Google Scholar 

  25. Shokrgozar MA, Mahmoodzadeh-Niknam H, Shokri F (2002) Distribution of circulating immune cells in responder and non-responder individuals to hepatitis B vaccine. Iran Biomed J 6(1):1–5

    Google Scholar 

  26. Shokrgozar MA, Shokri F (2001) Enumeration of hepatitis B surface antigen-specific B lymphocytes in responder and non-responder normal individuals vaccinated with recombinant hepatitis B surface antigen. Immunology 104(1):75–79. https://doi.org/10.1046/j.1365-2567.2001.01273.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lømo J, Blomhoff HK, Jacobsen SE, Krajewski S, Reed JC, Smeland EB (1997) Interleukin-13 in combination with CD40 ligand potently inhibits apoptosis in human B lymphocytes: upregulation of Bcl-xL and Mcl-1. Blood J Am Soc Hematol 89(12):4415–4424

    Google Scholar 

  28. Doi H, Yoshio S, Yoneyama K, Kawai H, Sakamoto Y, Shimagaki T, et al (2019) Immune determinants in the acquisition and maintenance of antibody to hepatitis B surface antigen in adults after first‐time hepatitis B vaccination. Hepatol Commun 3(6): 812–824. https://doi.org/10.1002/hep4.1357

  29. Tsai Y-F, Yang C-I, Du J-S, Lin M-H, Tang S-H, Wang H-C et al (2019) Rituximab increases the risk of hepatitis B virus reactivation in non-Hodgkin lymphoma patients who are hepatitis B surface antigen-positive or have resolved hepatitis B virus infection in a real-world setting: a retrospective study. PeerJ 7: e7481. https://doi.org/10.7717/peerj.7481

  30. Garner-Spitzer E, Wagner A, Paulke-Korinek M, Kollaritsch H, Heinz FX, Redlberger-Fritz M et al (2013) Tick-borne encephalitis (TBE) and hepatitis B nonresponders feature different immunologic mechanisms in response to TBE and influenza vaccination with involvement of regulatory T and B cells and IL-10. J Immunol 191(5):2426–2436. https://doi.org/10.4049/jimmunol.1300293

    Article  CAS  PubMed  Google Scholar 

  31. Burton AR, Pallett LJ, McCoy LE, Suveizdyte K, Amin OE, Swadling L et al (2018) Circulating and intrahepatic antiviral B cells are defective in hepatitis B. J Clin Investig 128(10):4588–4603. https://doi.org/10.1172/JCI121960

    Article  PubMed  PubMed Central  Google Scholar 

  32. Knox JJ, Buggert M, Kardava L, Seaton KE, Eller MA, Canaday DH, et al (2017) T-bet+ B cells are induced by human viral infections and dominate the HIV gp140 response. JCI Insight 2(8). https://doi.org/10.1172/jci.insight.92943

  33. Jubel JM, Barbati ZR, Burger C, Wirtz DC, Schildberg FA (2020) The role of PD-1 in acute and chronic infection. Front Immunol 11:487. https://doi.org/10.3389/fimmu.2020.00487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Amu S, Lavy-Shahaf G, Cagigi A, Hejdeman B, Nozza S, Lopalco L et al (2014) Frequency and phenotype of B cell subpopulations in young and aged HIV-1 infected patients receiving ART. Retrovirology 11(1):1–13. https://doi.org/10.1186/s12977-014-0076-x

    Article  CAS  Google Scholar 

  35. Wilson JK, Zhao Y, Singer M, Spencer J, Shankar-Hari M (2018) Lymphocyte subset expression and serum concentrations of PD-1/PD-L1 in sepsis-pilot study. Crit Care 22(1):1–7. https://doi.org/10.1186/s13054-018-2020-2

    Article  Google Scholar 

  36. Lu Y, Zhu Q, Li Y, Wang Q, Jiang C, Li Z et al (2020) Aberrant expression of PD-1 on B cells and its association with the clinical parameters of systemic lupus erythematosus. https://doi.org/10.21203/rs.2.17942/v2

  37. Poonia B, Ayithan N, Nandi M, Masur H, Kottilil S (2018) HBV induces inhibitory FcRL receptor on B cells and dysregulates B cell-T follicular helper cell axis. Sci Rep 8(1):1–14. https://doi.org/10.1038/s41598-018-33719-x

    Article  CAS  Google Scholar 

  38. Thibult M-L, Mamessier E, Gertner-Dardenne J, Pastor S, Just-Landi S, Xerri L et al (2013) PD-1 is a novel regulator of human B-cell activation. Int Immunol 25(2):129–137. https://doi.org/10.1093/intimm/dxs098

    Article  CAS  PubMed  Google Scholar 

  39. Roe K, Shu GL, Draves KE, Giordano D, Pepper M, Clark EA (2019) Targeting antigens to CD180 but not CD40 programs immature and mature B cell subsets to become efficient APCs. J Immunol 203(7):1715–1729. https://doi.org/10.4049/jimmunol.1900549

    Article  CAS  PubMed  Google Scholar 

  40. Chung JB, Silverman M, Monroe JG (2003) Transitional B cells: step by step towards immune competence. Trends Immunol 24(6):342–348. https://doi.org/10.1016/s1471-4906(03)00119-4

    Article  Google Scholar 

  41. Perez-Andres M, Paiva B, Nieto WG, Caraux A, Schmitz A, Almeida J et al (2010) Human peripheral blood B-cell compartments: a crossroad in B-cell traffic. Cytometry B Clin Cytom 78(S1):S47–S60. https://doi.org/10.1002/cyto.b.20547

    Article  CAS  PubMed  Google Scholar 

  42. Weinberg A, Lindsey J, Bosch R, Persaud D, Sato P, Ogwu A et al (2018) B and T cell phenotypic profiles of African HIV-infected and HIV-exposed uninfected infants: associations with antibody responses to the pentavalent rotavirus vaccine. Front Immunol 8:2002. https://doi.org/10.3389/fimmu.2017.02002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schmidlin H, Diehl SA, Blom B (2009) New insights into the regulation of human B-cell differentiation. Trends Immunol 30(6):277–285. https://doi.org/10.1016/j.it.2009.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB (2019) Immunosenescence and human vaccine immune responses. Immun Ageing 16(1):1–16. https://doi.org/10.1186/s12979-019-0164-9

    Article  CAS  Google Scholar 

  45. Notarte KI, Ver AT, Velasco JV, Pastrana A, Catahay JA, Salvagno GL et al (2021) Effects of age, sex, serostatus and underlying comorbidities on humoral response post-SARS-CoV-2 Pfizer-BioNTech vaccination: a systematic review. medRxiv. https://doi.org/10.1080/10408363.2022.2038539

  46. Müller L, Andrée M, Moskorz W, Drexler I, Walotka L, Grothmann R et al (2021) Age-dependent immune response to the Biontech/Pfizer BNT162b2 COVID-19 vaccination. MedRxiv. https://doi.org/10.1093/cid/ciab381

    Article  PubMed  PubMed Central  Google Scholar 

  47. Colonna-Romano G, Bulati M, Aquino A, Pellicano M, Vitello S, Lio D et al (2009) A double-negative (IgD− CD27−) B cell population is increased in the peripheral blood of elderly people. Mech Ageing Dev 130(10):681–690. https://doi.org/10.1016/j.mad.2009.08.003

    Article  CAS  PubMed  Google Scholar 

  48. Dunn-Walters DK, Stewart AT, Sinclair EL, Serangeli I (2020) Age-related changes in B cells relevant to vaccine responses. Interdiscip Top Gerontol Geriatr 43:56–72. https://doi.org/10.1159/000504479

    Article  PubMed  Google Scholar 

  49. Ubillos I, Campo JJ, Requena P, Ome-Kaius M, Hanieh S, Rose H et al (2017) Chronic exposure to malaria is associated with inhibitory and activation markers on atypical memory B cells and marginal zone-like B cells. Front Immunol 8:966. https://doi.org/10.3389/fimmu.2017.00966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang S, Tian G, Cui Y, Ding C, Deng M, Yu C et al (2016) Factors influencing immunologic response to hepatitis B vaccine in adults. Sci Rep 6(1):1–12. https://doi.org/10.1038/srep27251

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish thank to all the individuals who consented to participate in this study.

Funding

This study was a part of MSc project of Zahra Saleh, Department of Immunology Shiraz University of Medical Sciences and was financially supported by Shiraz University of Medical Sciences (Grant no 21740).

Author information

Authors and Affiliations

Authors

Contributions

KK designed the project, ZS performed the experiments, analyzed the data, prepared all figures and tables, and wrote the manuscript; KK, FM, MA, MH, and DK reviewed and edited the manuscript. All authors have read and approved the final paper.

Corresponding author

Correspondence to Kurosh Kalantar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The study protocol was approved by the Ethics Committee of the Shiraz University of Medical Sciences (IR.SUMS.REC.1399.907).

Informed Consent

Written informed consent was obtained from all the participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 896 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, Z., Mehdipour, F., Ataollahi, M.R. et al. Frequency of B-Cell Subpopulations in Low Responders in Comparison with High Responders to Hepatitis B Vaccine Among Health Care Workers. Curr Microbiol 80, 296 (2023). https://doi.org/10.1007/s00284-023-03367-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03367-0

Navigation