Skip to main content

Advertisement

Log in

Photodynamic Therapy and Its Synergism with Melittin Against Drug-Resistant Acinetobacter baumannii Isolates with High Biofilm Formation Ability

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Drug-resistant biofilm producer A. baumannii isolates are a global concern that warns researchers about the development of new treatments. This study was designed to analyze the effect of photodynamic therapy (PDT) as monotherapy and associated with melittin on multidrug-resistant A. baumannii isolates. Sub-lethal doses of photosensitizer, LED, and PDT were determined. The PDT effect on the biofilm and expression of biofilm-associated genes was evaluated by scanning electron microscopy and quantitative real-time PCR (qRT-PCR) methods, respectively. The synergistic effect of PDT and melittin on the survival of MDR/XDR strong biofilm producer isolates was evaluated by checkerboard assay. Survival rates were significantly decreased at the lowest concentration of 12.5–50 μg/ml in 4 min at an energy density of 93.75 J/cm2 (P < 0.05). The optimized PDT method had a bactericidal effect against all tested groups, and the mean expression levels of csu, abaI, bap, and ompA genes in the strong biofilm producers were decreased significantly compared to the control group. The combined effect of LED and melittin successfully reduced the MDR/XDR A. baumannii strong biofilm producers' growth from 3.1 logs. MB-mediated aPDT and combined treatment of PDT with melittin, which has been investigated for the first time in this study, can be an efficient strategy against MDR/XDR A. baumannii isolates with strong biofilm production capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

References

  1. Ayoub Moubareck C, Hammoudi Halat D (2020) Insights into Acinetobacter baumannii: a review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen. Antibiotics 9(3):119. https://doi.org/10.3390/antibiotics9030119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eze EC, Chenia HY, El Zowalaty ME (2018) Acinetobacter baumannii biofilms: effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect Drug Resist 11:2277–2299. https://doi.org/10.2147/IDR.S169894

    Article  CAS  PubMed Central  Google Scholar 

  3. Colquhoun JM, Rather PN (2020) Insights into mechanisms of biofilm formation in Acinetobacter baumannii and implications for uropathogenesis. Front Cell Infect Microbiol 10:253. https://doi.org/10.3389/fcimb.2020.00253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Breslawec AP, Wang S, Li C et al (2021) Anionic amino acids support hydrolysis of poly-β-(1, 6)-N-acetylglucosamine exopolysaccharides by the biofilm dispersing glycosidase Dispersin. B J Biol Chem 296:100203. https://doi.org/10.1074/jbc.RA120.015524

    Article  CAS  PubMed  Google Scholar 

  5. Loehfelm TW, Luke NR, Campagnari AA (2008) Identification and characterization of an Acinetobacter baumannii biofilm-associated protein. J Bacteriol 190(3):1036–1044. https://doi.org/10.1128/JB.01416-07

    Article  CAS  PubMed  Google Scholar 

  6. Pourhajibagher M et al (2020) Photodisinfection effects of silver sulfadiazine nanoliposomes doped-curcumin on Acinetobacter baumannii: a mouse model. Nanomedicine 15(05):437–452. https://doi.org/10.2217/nnm-2019-0315

    Article  CAS  PubMed  Google Scholar 

  7. Chen J, Fan T, Xie Z et al (2020) Advances in nanomaterials for photodynamic therapy applications: status and challenges. Biomaterials 237:119827. https://doi.org/10.1016/j.biomaterials.2020.119827

    Article  CAS  PubMed  Google Scholar 

  8. Kashef N, Abadi GRS, Djavid GE (2012) Phototoxicity of phenothiazinium dyes against methicillin-resistant Staphylococcus aureus and multi-drug resistant Escherichia coli. Photodiagnosis Photodyn Ther 9(1):11–15. https://doi.org/10.1016/j.pdpdt.2011.11.004

    Article  CAS  Google Scholar 

  9. Boluki E, Moradi M, Azar PS et al (2019) The effect of antimicrobial photodynamic therapy against virulence genes expression in colistin-resistance Acinetobacter baumannii. Laser Ther 28(1):27–33. https://doi.org/10.5978/islsm.28_19-OR-03

    Article  PubMed  PubMed Central  Google Scholar 

  10. Perez F, Hujer AM, Hujer KM et al (2007) Global challenge of multidrug-resistant Acinetobacter baumannii. Agents Chemother 51(10):3471–3484. https://doi.org/10.1128/AAC.01464-06

    Article  CAS  Google Scholar 

  11. Wozniak A, Rapacka-Zdonczyk A, Mutters NT et al (2019) Antimicrobials are a photodynamic inactivation adjuvant for the eradication of extensively drug-resistant Acinetobacter baumannii. Front Microbiol 10:229. https://doi.org/10.3389/fmicb.2019.00229

    Article  PubMed  PubMed Central  Google Scholar 

  12. Akbari R, Hakemi-Vala M, Pashaie F et al (2019) Highly synergistic effects of melittin with conventional antibiotics against multidrug-resistant isolates of Acinetobacter baumannii and Pseudomonas aeruginosa. Microb Drug Resist 25(2):193–202. https://doi.org/10.1089/mdr.2018.0016

    Article  CAS  PubMed  Google Scholar 

  13. Galdiero E, Siciliano A, Gesuele R et al (2019) Melittin inhibition and eradication activity for resistant polymicrobial biofilm isolated from a dairy industry after disinfection. Int J Microbiol 15:4012394. https://doi.org/10.1155/2019/4012394

    Article  CAS  Google Scholar 

  14. Alni RH, Tavasoli F, Barati A et al (2020) Synergistic activity of melittin with mupirocin: a study against methicillin-resistant S. Aureus (MRSA) and methicillin-susceptible S. Aureus (MSSA) isolates. Saudi J Biol Sci 27(10):2580–2585. https://doi.org/10.1016/j.sjbs.2020.05.027

    Article  CAS  Google Scholar 

  15. Brown A, Smith H (2015) Benson’s microbiological applications: laboratory manual in general microbiology, short version, 13th edn. McGraw-Hill Education, New York, pp 257–261

    Google Scholar 

  16. Woodford N, Ellington MJ, Coelho JM et al (2006) Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 27(4):351–353. https://doi.org/10.1016/j.ijantimicag.2006.01.004

    Article  CAS  PubMed  Google Scholar 

  17. CLSI (2016) Performance standards for antimicrobial susceptibility testing. Clin Lab Stand Inst 35(3):16–38

    Google Scholar 

  18. Magiorakos AP, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  PubMed  Google Scholar 

  19. Tendolkar PM, Baghdayan AS, Gilmore MS et al (2004) Enterococcal surface protein, Esp, enhances biofilm formation by Enterococcus faecalis. Infect Immun 72(10):6032–6039. https://doi.org/10.1128/IAI.72.10.6032-6039.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ghasemi E, Zhang S, Mi P et al (2018) Phenotypic and genotypic investigation of biofilm formation in clinical and environmental isolates of Acinetobacter baumannii. Arch Clin Infect Dis 13(4):e12914. https://doi.org/10.5812/archcid.12914

    Article  Google Scholar 

  21. Seifi K, Kazemian H, Heidari H et al (2016) Evaluation of biofilm formation among Klebsiella pneumoniae isolates and molecular characterization by ERIC-PCR. Jundishapur J Microbiol 9(1):e30682. https://doi.org/10.5812/jjm.30682

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mahmoudi H, Pourhajibagher M, Alikhani MY et al (2019) The effect of antimicrobial photodynamic therapy on the expression of biofilm associated genes in Staphylococcus aureus strains isolated from wound infections in burn patients. Photodiagnosis Photodyn Ther 25:406–413. https://doi.org/10.1016/j.pdpdt.2019.01.028

    Article  CAS  PubMed  Google Scholar 

  23. Man A, Santacroce L, Jacob R et al (2019) Antimicrobial activity of six essential oils against a group of human pathogens: a comparative study. Pathogens 8(1):15. https://doi.org/10.3390/pathogens8010015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alni RH, Ghorban K, Dadmanesh M (2020) Combined effects of Allium sativum and Cuminum cyminum essential oils on planktonic and biofilm forms of Salmonella typhimurium isolates. 3 Biotech 10(7):1–10. https://doi.org/10.1007/s13205-020-02286-2

    Article  Google Scholar 

  25. Tseng SP, Hung WC, Huang CY et al (2016) 5-Episinuleptolide decreases the expression of the extracellular matrix in early biofilm Formation of multi-drug resistant Acinetobacter baumannii. Mar drugs 14(8):143. https://doi.org/10.3390/md14080143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McConnell MJ, Pérez-Ordóñez A, Pérez-Romero P et al (2012) Quantitative real-time PCR for detection of Acinetobacter baumannii colonization in the hospital environment. J Clin Microbiol 50(4):1412–1414. https://doi.org/10.1128/JCM.06566-11

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pourhajibagher M, Boluki E, Chiniforush N et al (2016) Modulation of virulence in Acinetobacter baumannii cells surviving photodynamic treatment with toluidine blue. Photodiagnosis Photodyn Ther 15:202–212. https://doi.org/10.1016/j.pdpdt.2016.07.007

    Article  CAS  PubMed  Google Scholar 

  28. Azizi O, Shahcheraghi F, Salimizand H et al (2016) Molecular analysis and expression of bap gene in biofilm-forming multi-drug-resistant Acinetobacter baumannii. Rep Biochem Mol Biol 5(1):62–72

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  30. Iluz N, Maor Y, Keller N et al (2018) The synergistic effect of PDT and oxacillin on clinical isolates of Staphylococcus aureus. Lasers Surg Med 50(5):535–551. https://doi.org/10.1002/lsm.22785

    Article  PubMed  Google Scholar 

  31. Ronqui MR, de Aguiar Coletti TM, de Freitas LM et al (2016) Synergistic antimicrobial effect of photodynamic therapy and ciprofloxacin. J Photochem Photobiol B 158:122–129. https://doi.org/10.1016/j.jphotobiol.2016.02.036

    Article  CAS  Google Scholar 

  32. Chiniforush N, Pourhajibagher M, Shahabi S et al (2015) Clinical approach of high technology techniques for control and elimination of endodontic microbiota. J Lasers Med Sci 6(4):139–150. https://doi.org/10.15171/jlms.2015.09

    Article  PubMed  Google Scholar 

  33. Vera DMA, Haynes MH, Ball AR et al (2012) Strategies to potentiate antimicrobial photoinactivation by overcoming resistant phenotypes. Photochem Photobiol 88(3):499–511. https://doi.org/10.1111/j.1751-1097.2012.01087.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. De Melo WC, Avci P, de Oliveira MN et al (2013) Photodynamic inactivation of biofilm: taking a lightly colored approach to stubborn infection. Expert Rev Anti Infect Ther 11(7):669–693. https://doi.org/10.1586/14787210.2013.811861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pourhajibagher M, Chiniforush N, Shahabi S et al (2016) Sub-lethal doses of photodynamic therapy affect biofilm formation ability and metabolic activity of Enterococcus faecalis. Photodiagnosis Photodyn Ther 15:159–166. https://doi.org/10.1016/j.pdpdt.2016.06.003

    Article  CAS  PubMed  Google Scholar 

  36. Dai T, Tegos GP, Lu Z et al (2009) Photodynamic therapy for Acinetobacter baumannii burn infections in mice. Antimicrob Agents Chemother 53(9):3929–3934. https://doi.org/10.1128/AAC.00027-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cho K, Lee SY, Chang BS et al (2015) The effect of photodynamic therapy on Aggregatibacter actinomycetemcomitans attached to surface-modified titanium. J Periodontal Implant Sci 45(2):38–45. https://doi.org/10.5051/jpis.2015.45.2.38

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chow JY, Yang Y, Tay SB et al (2014) Disruption of biofilm formation by the human pathogen Acinetobacter baumannii using engineered quorum-quenching lactonases. Antimicrob Agents Chemother 58(3):1802–1805. https://doi.org/10.1128/AAC.02410-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wood S, Metcalf D, Devine D et al (2006) Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. J Antimicrob Chemother 57(4):680–684. https://doi.org/10.1093/jac/dkl021

    Article  CAS  Google Scholar 

  40. Tubby S, Wilson M, Nair SP (2009) Inactivation of staphylococcal virulence factors using a light-activated antimicrobial agent. BMC Microbiol 9(1):211. https://doi.org/10.1186/1471-2180-9-211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Issam AA, Zimmermann S, Reichling J et al (2015) Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens. Phytomedicine 22(2):245–255. https://doi.org/10.1016/j.phymed.2014.11.019

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any grant.

Author information

Authors and Affiliations

Authors

Contributions

LB: conceptualization, methodology, experimental works, statistical analysis, article writing; MG: methodology, experimental works, statistical analysis; MMR: experimental works. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Laleh Babaeekhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The protocol was approved by the Ethics Committee of Islamic Azad Tehran Medical Sciences University (Code: IR.IAU.PS.REC.1399.197).

Consent to Participate

All subjects gave their informed consent for inclusion before they participated in the study and volunteers’ data were anonymized before analysis.

Consent for Publication

The participants have consented to the submission of the manuscript to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 46 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaeekhou, L., Ghane, M. & Mohammad Rafiee, M. Photodynamic Therapy and Its Synergism with Melittin Against Drug-Resistant Acinetobacter baumannii Isolates with High Biofilm Formation Ability. Curr Microbiol 80, 324 (2023). https://doi.org/10.1007/s00284-023-03356-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03356-3

Navigation