Skip to main content
Log in

Enhancement of Growth and Synthesis of Extracellular Enzymes of Morchella sextelata Induced by Co-culturing with Trichoderma

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Trichoderma is a genus of common filamentous fungi that display a various range of lifestyles and interactions with other fungi. The interaction of Trichoderma with Morchella sextelata was explored in this study. Trichoderma sp. T-002 was isolated from a wild fruiting body of Morchella sextelata M-001 and identified as a closely related species of Trichoderma songyi based on morphological chracteristics and phylogenetic analysis of translation elongation factor1-alpha and inter transcribed spacer of rDNA. Further, we focussed on the influence of dry mycelia of T-002 on the growth and synthesis of extracellular enzymes of M-001. Among different treatments, M-001 showed the highest growth of mycelia with an optimal supplement of 0.33 g/100 mL of T-002. Activities of extracellular enzymes of M-001 were enhanced significantly by the optimal supplement treatment. Overall, T-002, a unique Trichoderma species, had a positive effect on mycelial growth and synthesis of extracellular enzymes of M-001.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets and code generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Du XH, Yang ZL (2021) Mating systems in true morels (Morchella). Microbiol Mol Biol Rev 85:e00220-e320. https://doi.org/10.1128/MMBR.00220-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cai ZN, Li W, Mehmood S, Pan WJ, Wang Y, Meng FJ, Wang XF, Lu YM, Chen Y (2018) Structural characterization, in vitro and in vivo antioxidant activities of a heteropolysaccharide from the fruiting bodies of Morchella esculenta. Carbohyd Polym 195:29–38. https://doi.org/10.1016/j.carbpol.2018.04.069

    Article  CAS  Google Scholar 

  3. Badshah SL, Riaz A, Muhammad A, Tel Cayan G, Cayan F, Emin Duru M, Ahmad N, Emwas AH, Jaremko M (2021) Isolation, characterization, and medicinal potential of polysaccharides of Morchella esculenta. Molecules 26(5):1459. https://doi.org/10.3390/molecules26051459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Du XH, Zhao Q, O’Donnell K, Rooney AP, Yang ZL (2012) Multigene molecular phylogenetics reveals true morels (Morchella) are especially species-rich in China. Fungal Genet Biol 49(6):455–469. https://doi.org/10.1016/j.fgb.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  5. He S, Zhao K, Ma L, Yang J, Chang Y (2018) Effects of different cultivation material formulas on the growth and quality of Morchella spp. Saudi J Biol Sci 25(4):719–723. https://doi.org/10.1016/j.sjbs.2017.11.021

    Article  PubMed  Google Scholar 

  6. Balasubramanian N, Thamil Priya V, Gomathinayagam S, Lalithakumari D (2012) Fusant Trichoderma HF9 with enhanced extracellular chitinase and protein content. Appl Biochem Micro 48(4):409–415. https://doi.org/10.1134/S0003683812040035

    Article  CAS  Google Scholar 

  7. Bae YS, Knudsen G (2005) Soil microbial biomass influence on growth and biocontrol efficacy of Trichoderma harzianum. Biol Control 32(2):236–242. https://doi.org/10.1016/j.biocontrol.2004.10.001

    Article  Google Scholar 

  8. Jamil A, Musheer N, Ashraf S (2021) Antagonistic potential of Trichoderma harzianum and Azadirachta indica against Fusarium oxysporum f. sp. capsici for the management of chilli wilt. J Plant Dis Protect 128(1):161–172. https://doi.org/10.1007/s41348-020-00383-1

    Article  CAS  Google Scholar 

  9. Balasubramanian N, Thamil Priya V, Shanmugaiah V, Lalithakumari D (2014) Effect of improved Trichoderma fusants and their parent strains in control of sheath blight of rice and wilt of tomato. J Plant Dis Protect 121(2):71–78. https://doi.org/10.1007/BF03356494

    Article  Google Scholar 

  10. De Sousa TP, Chaibub AA, Cortes MVDCB, Batista TFC, Bezerra GDA, Da Silva GB, De Filippi MCC (2021) Molecular identification of Trichoderma sp. isolates and biochemical characterization of antagonistic interaction against rice blast. Arch Microbiol 203(6):3257–3268. https://doi.org/10.1007/s00203-021-02307-5

    Article  CAS  PubMed  Google Scholar 

  11. Boughalleb M’Hamdi N, Salem IB, M’Hamdi M (2018) Evaluation of the efficiency of Trichoderma, penicillium, and aspergillus species as biological control agents against four soil-borne fungi of melon and watermelon. Egypt J Biol Pest Co 28(1):25. https://doi.org/10.1186/s41938-017-0010-3

    Article  Google Scholar 

  12. Samuels GJ, Dodd SL, Gams W, Castlebury LA, Petrini O (2002) Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94(1):146–170. https://doi.org/10.1080/15572536.2003.11833257

    Article  PubMed  Google Scholar 

  13. Vaario LM, Fritze H, Spetz P, Heinonsalo J, Hanajı´ KP, Pennanen T (2011) Tricholoma matsutake dominates diverse microbial communities in different forest soils. Appl Environ Microbiol 77(24):8523–8531. https://doi.org/10.1128/AEM.05839-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kulikov SN, Alimova FK, Zakharova NG, Nemtsev SV, Varlamov VP (2006) Biological preparations with different mechanisms of action for protecting potato against fungal diseases. Appl Biochem Micro 42(1):77–83. https://doi.org/10.1134/S0003683806010121

    Article  CAS  Google Scholar 

  15. Yin D, Deng X, Chet I, Song R (2014) Physiological responses of pinus sylvestris var. Mongolica seedlings to the interaction between suillus iuteus and Trichoderma virens. Curr Microbiol 69(3):334–342. https://doi.org/10.1007/s00284-014-0589-5

    Article  CAS  PubMed  Google Scholar 

  16. Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91(3):553–556. https://doi.org/10.1080/00275514.1999.12061051

    Article  CAS  Google Scholar 

  17. Jaklitsch WM, Samuels G, Ismaiel A, Voglmayr H (2013) Disentangling the Trichoderma viridescens complex. Persoonia 31(1):112–146. https://doi.org/10.3767/003158513X672234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Park M, Oh S, Cho H, Fong J, Cheon W, Lim Y (2014) Trichoderma songyi sp nov, a new species associated with the pine mushroom (Tricholoma matsutake). Anton Leeuw Int J G 106(4):593–603. https://doi.org/10.1007/s10482-014-0230-4

    Article  Google Scholar 

  19. Hortal S, Pera J, Galipienso L, Parlade J (2006) Molecular identification of the edible ectomycorrhizal fungus Lactarius deliciosus in the symbiotic and extraradical mycelium stages. Biotechnol 126(2):123–134. https://doi.org/10.1016/j.jbiotec.2006.04.011

    Article  CAS  Google Scholar 

  20. Hao H, Zhang J, Wang H, Wang Q, Chen M, Juan J, Feng Z, Chen H (2019) Comparative transcriptome analysis reveals potential fruiting body formation mechanisms in Morchella importuna. AMB Express 9(1):103. https://doi.org/10.1186/s13568-019-0831-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma Q, Lan DM, Shao AN, Li YH, Zhang XY (2022) Red fluorescent protein from cyanobacteriochrome chromophorylated with phycocyanobilin and biliverdin. Anal Biochem. 642:114557. https://doi.org/10.1016/j.ab.2022.114557

    Article  CAS  PubMed  Google Scholar 

  22. Ao X, Yu X, Wu D, Li C, Zhang T, Liu S, Chen S, He L, Zhou K, Zou L (2018) Purification and characterization of neutral protease from Aspergillus oryzae Y1 isolated from naturally fermented broad beans. AMB Express 8(1):96. https://doi.org/10.1186/s13568-018-0611-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peng H, Li R, Li F, Zhai L, Zhang X, Xiao Y, Gao Y (2018) Extensive hydrolysis of raw rice starch by a chimeric α-amylase engineered with α-amylase (AmyP) and a starch-binding domain from Cryptococcus sp. S-2. Appl Microbiol Biot 102(2):743–750. https://doi.org/10.1007/s00253-017-8638-1

    Article  CAS  Google Scholar 

  24. Chai S, Zhang X, Jia Z, Xu X, Zhang Y, Wang S, Feng Z (2020) Identification and characterization of a novel bifunctional cellulase/hemicellulase from a soil metagenomic library. Appl Microbiol Biot 104(17):7563–7572. https://doi.org/10.1007/s00253-020-10766-x

    Article  CAS  Google Scholar 

  25. Liu J, Liu S, Zhang X, Kan J, Jin C (2019) Effect of gallic acid grafted chitosan film packaging on the postharvest quality of white button mushroom (Agaricus bisporus). Postharvest Biol Tec 147:39–47. https://doi.org/10.1016/j.postharvbio.2018.09.004

    Article  CAS  Google Scholar 

  26. Dokhanieh AY, Aghdam MS (2016) Postharvest browning alleviation of Agaricus bisporus using salicylic acid treatment. Sci Hortic-amsterdam 207:146–151. https://doi.org/10.1016/j.scienta.2016.05.025

    Article  CAS  Google Scholar 

  27. Niiyama T, Toyohara H (2011) Widespread distribution of cellulase and hemicellulase activities among aquatic invertebrates. Fisheries Sci 77(4):649–655. https://doi.org/10.1007/s12562-011-0361-8

    Article  CAS  Google Scholar 

  28. Li XH, Yang HJ, Roy B, Park EY, Jiang LJ, Wang D, Miao YG (2010) Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultraviolet. Microbiol Res 165(3):190–198. https://doi.org/10.1016/j.micres.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  29. Samuels GJ, Dodd SL, Lu BS, Petrini O, Schroers HJ, Druzhinina IS (2006) The Trichoderma koningii aggregate species. Stud Mycol 56:67–133. https://doi.org/10.3114/sim.2006.56.03

    Article  PubMed  PubMed Central  Google Scholar 

  30. Joshi D, Singh P, Singh AK, Lal RJ, Tripathi N (2016) Antifungal potential of metabolites from Trichoderma sp. against colletotrichum falcatum went causing red rot of sugarcane. Sugar Tech 18(5):529–536. https://doi.org/10.1007/s12355-015-0421-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Hubei Shengfeng Pharmacy Co. Ltd. for providing Morchella sextelata.

Funding

This work was supported by the following projects: Natural Science Foundation of Hubei Province (Grant number 2021CFB552), Enshi Science and Technology Project of Hubei Province (grant number D20190025), high-level scientific research project of Hubei Minzu University (Grant number PY20020), National Innovation and Entrepreneurship Training Program for College Students of Hubei Minzu University (Grant number 202210517008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Ma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 156 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Hu, Q., Zhang, L. et al. Enhancement of Growth and Synthesis of Extracellular Enzymes of Morchella sextelata Induced by Co-culturing with Trichoderma. Curr Microbiol 80, 235 (2023). https://doi.org/10.1007/s00284-023-03347-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03347-4

Navigation