Skip to main content
Log in

Isolation and Characterization of Sphingomonas telluris, Sphingomonas caseinilyticus Isolated from Wet Land Soil

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Two novel bacterial strains, designated as SM33T and NSE70-1T, were isolated from wet soil in South Korea. To get the taxonomic positions, the strains were characterized. The genomic information (both 16S rRNA gene and draft genome sequence analysis) show that both novel isolates (SM33T and NSE70-1T) belong to the genus Sphingomonas. SM33T share the highest 16s rRNA gene similarity (98.2%) with Sphingomonas sediminicola Dae20T. In addition, NSE70-1T show 96.4% 16s rRNA gene similarity with Sphingomonas flava THG-MM5T. The draft genome of strains SM33T and NSE70-1T consist of a circular chromosome of 3,033,485 and 2,778,408 base pairs with DNA G+C content of 63.9, and 62.5%, respectively. Strains SM33T and NSE70-1T possessed the ubiquinone Q-10 as the major quinone, and a fatty acid profile with C16:0, C18:1 2-OH, C16:1 ω7c/C16:1 ω6c (summed feature 3) and C18:1 ω7c/C18:1 ω6c (summed feature 8) as major fatty acids. The major polar lipids of SM33T and NSE70-1T were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid and phosphatidylcholine, respectively. Moreover, genomic, physiological, and biochemical results allowed the phenotypic and genotypic differentiation of strains SM33T and NSE70-1T from their closest and other species of the genus Sphingomonas with validly published names. Therefore, the SM33T and NSE70-1T represent novel species of the genus Sphingomonas, for which the name Sphingomonas telluris sp. nov. (type strain SM33T = KACC 22222T = LMG 32193T), and Sphingomonas caseinilyticus (type strain NSE70-1T = KACC 22411T = LMG 32495T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T, Yamamoto H (1990) Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34:99–119

    CAS  PubMed  Google Scholar 

  2. Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417

    CAS  PubMed  Google Scholar 

  3. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I, Ogura H, Kobayashi K (2002) Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 52:1485–1496

    CAS  PubMed  Google Scholar 

  4. Busse HJ, Denner EB, Buczolits S, Salkinoja-Salonen M, Bennasar A, Kämpfer P (2003) Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 53:1253–1260

    CAS  PubMed  Google Scholar 

  5. Busse HJ, Kämpfer P, Denner EB (1999) Chemotaxonomic characterization of Sphingomonas. J Ind Microbiol Biotechnol 23:242–251

    CAS  PubMed  Google Scholar 

  6. An DS, Liu QM, Lee HG, Jung MS, Kim SC, Lee ST, Im WT (2013) Sphingomonas ginsengisoli sp. nov. and Sphingomonas sediminicola sp. nov. Int J Syst Evol Microbiol 63:496–501

    CAS  PubMed  Google Scholar 

  7. Asker D, Beppu T, Ueda K (2007) Sphingomonas jaspsi sp. nov., a novel carotenoid-producing bacterium isolated from Misasa, Tottori, Japan. Int J Syst Evol Microbiol 57:1435–1441

    CAS  PubMed  Google Scholar 

  8. Huy H, Jin L, Lee KC, Kim SG, Lee JS, Ahn CY, Oh HM (2014) Sphingomonas daechungensis sp. nov., isolated from sediment of a eutrophic reservoir. Int J Syst Evol Microbiol 64:1412–1418

    CAS  PubMed  Google Scholar 

  9. Lee JS, Shin YK, Yoon JH, Takeuchi M, Pyun YR, Park YH (2001) Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 51:1491–1498

    CAS  PubMed  Google Scholar 

  10. Li YQ, Narsing Rao MP, Zhang H, Guo YM, Dong ZY, Alkhalifah DHM, Hozzein WN, Xiao M, Li WJ (2019) Description of Sphingomonas mesophila sp. nov., isolated from Gastrodia elata Blume. Int J Syst Evol Microbiol 69:1030–1034

    CAS  PubMed  Google Scholar 

  11. Siddiqi MZ, Choi GM, Kim SY, Choi KD, Im WT (2017) Sphingomonas agri sp. nov., a bacterium isolated from soil. Int J Syst Evol Microbiol 67:4429–4434

    CAS  PubMed  Google Scholar 

  12. Cha I, Kang H, Kim H, Joh K (2019) Sphingomonas ginkgonis sp. nov., isolated from phyllosphere of Ginkgo biloba. Int J Syst Evol Microbiol 69:3224–3229

    CAS  PubMed  Google Scholar 

  13. Srinivasan S, Lee JJ, Kim MK (2011) Sphingomonas rosea sp. nov. and Sphingomonas swuensis sp. nov., rosy colored β-glucosidaseproducing bacteria isolated from soil. J Microbiol 49:610–616

    CAS  PubMed  Google Scholar 

  14. Asker D, Beppu T, Ueda K (2007) Sphingomonas astaxanthinifaciens sp. nov., a novel astaxanthin-producing bacterium of the family Sphingomonadaceae isolated from Misasa, Tottori, Japan. FEMS Microbiol Lett 273:140–148

    CAS  PubMed  Google Scholar 

  15. Yang DC, Im WT, Kim MK, Ohta H, Lee ST (2006) Sphingomonas soli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in the a-4 subgroup of the proteobacteria. Int J Syst Evol Microbiol 56:703–707

    CAS  PubMed  Google Scholar 

  16. Yan ZF, Lin P, Won KH, Li CT, Park G, Chin B, Kook M, Wang QJ, Yi TH (2018) Sphingomonas rhizophila sp. nov., isolated from rhizosphere of Hibiscus syriacus. Int J Syst Evol Microbiol 68:681–686

    CAS  PubMed  Google Scholar 

  17. Liu Q, Liu HC, Zhang JL, Zhou YG, Xin YH (2015) Sphingomonas psychrolutea sp. nov., a psychrotolerant bacterium isolated from glacier ice. Int J Syst Evol Microbiol 65:2955–2959

    CAS  PubMed  Google Scholar 

  18. Kim H, Chhetri G, Seo T (2020) Sphingomonas edaphi sp. nov., a novel species isolated from beach soil in the Republic of Korea. Int J Syst Evol Microbiol 70:522–529

    CAS  PubMed  Google Scholar 

  19. Lee JC, Whang KS (2020) Sphingomonas segetis sp. nov., isolated from spinach farming field soil. Int J Syst Evol Microbiol 70:3905–3911

    CAS  PubMed  Google Scholar 

  20. Luo YR, Tian Y, Huang X, Kwon K, Yang SH et al (2012) Sphingomonas polyaromaticivorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium from an oil port water sample. Int J Syst Evol Microbiol 62:1223–1227

    CAS  PubMed  Google Scholar 

  21. Lin SY, Shen FT, Lai WA, Zhu ZL, Chen WM et al (2012) Sphingomonas formosensis sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 62:1581–1586

    CAS  PubMed  Google Scholar 

  22. Choi TE, Liu QM, Yang JE, Sun S, Kim SY et al (2010) Sphingomonas ginsenosidimutans sp. nov., with ginsenoside converting activity. J Microbiol 48:760–766

    PubMed  Google Scholar 

  23. Son HM, Yang JE, Park YJ, Han CK, Kim SG et al (2013) Sphingomonas kyungheensis sp. nov., a bacterium with ginsenoside-converting activity isolated from soil of a ginseng field. Int J Syst Evol Microbiol 63:3848–3853

    PubMed  Google Scholar 

  24. Shungu D, Valiant M, Tutlane V, Weinberg E, Weissberger B et al (1983) GELRITE as an agar substitute in bacteriological media. Appl Environ Microbiol 46(4):840–845

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Im WT, Liu QM, Yang JE, Kim MS, Lee ST, Yi TH (2010) Panacagrimonas perspica gen. nov., sp. nov., a novel member of Gammaproteobacteria isolated from soil of a ginseng field. J Microbiol 48:262–266

    PubMed  Google Scholar 

  26. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1999) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Google Scholar 

  28. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  29. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  30. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 14:406–425

    Google Scholar 

  31. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Google Scholar 

  32. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evoltion 39:783–791

    Google Scholar 

  34. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    CAS  Google Scholar 

  35. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Buck JD (1982) Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–655

    Google Scholar 

  38. Ten LN, Im WT, Kim MK, Kang MS, Lee ST (2004) Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbial Methods 56:375–382

    CAS  Google Scholar 

  39. Cappuccino JG, Sherman N (2002) Microbiology: a laboratory manual, 6th edn. Pearson Education Inc, California

    Google Scholar 

  40. Minnikin D, O’donnell A, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 25:233–41

    Google Scholar 

  41. Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbial 42:457–469

    CAS  Google Scholar 

  42. Sasser M (1990) Identification of bacteria through fatty acid analysis. In: Klement Z, Rudolph K, Sands DC (eds) Methods in phytobacteriology. Akademiai Kaido, Budapest, pp 199–204

    Google Scholar 

  43. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466

    CAS  PubMed  Google Scholar 

  44. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al (1987) International Committee on Systematic Bacteriology Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Google Scholar 

  45. Lee JH, Kim DI, Kang JW, Seong CN (2016) Sphingomonas lutea sp. nov., isolated from freshwater of an artificial reservoir. Int J Syst Evol Microbiol 66:5493–5499

    CAS  PubMed  Google Scholar 

  46. Lee JH, Kim DI, Choe HN, Lee SD, Seong CN (2017) Sphingomonas limnosediminicola sp. nov. and Sphingomonas palustris sp. nov., isolated from freshwater environments. Int J Syst Evol Microbiol 67:2834–2841

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1I1A1A01061945), and by Brain Pool Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (Project No. 2019H1D3A1A02070958, and by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: MZ, GR, MF, WTI. Performed the experiments: MZS, WTI. Analyzed the data: MZS, WTI. Wrote the manuscript: MZS. Review: MF, WTI.

Corresponding author

Correspondence to Wan-Taek Im.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest.

Research Involving Human and Animal Rights

This study does not describe any experimental work related to human.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The NCBI/EMBL/DDBJ accession numbers for the 16S rRNA and whole genome sequences of strains SM33T, and NSE70-1T are JAKZHW000000000, MW164938, and MZ675811, and JAMGBA000000000, respectively.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 367 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqi, M.Z., Rajivgandhi, G., Faiq, M. et al. Isolation and Characterization of Sphingomonas telluris, Sphingomonas caseinilyticus Isolated from Wet Land Soil. Curr Microbiol 80, 264 (2023). https://doi.org/10.1007/s00284-023-03339-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03339-4

Navigation