Skip to main content
Log in

Chitinolyticbacter albus sp. Nov., A Novel Chitin-Degrading Bacterium Isolated from Ancient Wood Rhizosphere Soil

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In this study, a novel aerobic mesophilic bacterial strain with capable of degrading chitin, designated YIM B06366T, was isolated and classified. The rod-shaped, Gram-stain-negative, on-spore-forming bacterium originated from rhizosphere soil sample collected in Kunming City, Yunnan Province, southwest PR China. Strain YIM B06366T exhibited growth at temperatures between 20 and 35 °C (optimum, 30 °C) and at pH 6.0–8.0 (optimum, pH 6.0). The analysis of 16S rRNA gene sequence similarity revealed that strain YIM B06366T was most closely related to type strain Chitinolyticbacter meiyuanensis SYBC-H1T (98.9%). Phylogenetic analysis based on genome data indicated that strain YIM B06366T should be assigned to the genus Chitinolyticbacter. The Average Nucleotide Identity (ANI) and digital DNA-DNA Hybridization (dDDH) values between strain YIM B06366T and the reference strain Chitinolyticbacter meiyuanensis SYBC-H1T were 84.4% and 27.7%, respectively. The major fatty acids included Summed Feature 3 (C16:1 ω6c/C16:1 ω7c), Summed Feature 8 (C18:1 ω6c/C18:1 ω7c), and C16:0. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, aminophospholipids, and two unidentified phospholipids. The predominant menaquinone was Q-8, and the genomic DNA G + C content was 64.1%. Considering the polyphasic taxonomic evidence, strain YIM B06366T is proposed as a novel species within the genus Chitinolyticbacter, named Chitinolyticbacter albus sp. nov. (type strain YIM B06366T = KCTC 92434T = CCTCC AB 2022163T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

TSA:

Tryptose soy agar

TSB:

Tryptic soy broth

ANI:

Average nucleotide identity

dDDH:

Digital DNA-DNA hybridization

DPG:

Diphosphatidylglycerol

PE:

Phosphatidylethanolamine

APL:

Aminophospholipids

PL1, PL2:

Unidentified phospholipids

References

  1. Flach J, Pilet PE, Jolles P (1992) What’s new in chitinase research? Experientia 48(8):701–716. https://doi.org/10.1007/BF02124285

    Article  CAS  PubMed  Google Scholar 

  2. Baharlouei P, Rahman A (2022) Chitin and chitosan: prospective biomedical applications in drug delivery, cancer treatment, and wound healing. Mar Drugs 20(7):460. https://doi.org/10.3390/md20070460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hao Z, Cai Y, Liao X, Liang X, Liu J, Fang Z, Hu M, Zhang D (2011) Chitinolyticbacter meiyuanensis SYBC-H1T, gen. Nov., sp. Nov., a chitin-degrading bacterium isolated from soil. Curr Microbiol 62(6):1732–8. https://doi.org/10.1007/s00284-011-9921-5

    Article  CAS  PubMed  Google Scholar 

  4. Feng YZ, Chunyu WX, Liang R, Hahnke RL, Schumann P, Zhao YR, Gao S, Yin M, Ji Y, Sun L, Zhi XY, Tang SK (2020) Vallicoccus soli gen. Nov., sp. Nov., a novel actinobacterium isolated from soil, and description of Vallicoccaceae fam. nov Motilibacterales ord Nov. Antonie Van Leeuwenhoek 113:2155–2165. https://doi.org/10.1007/s10482-020-01484-5

    Article  CAS  PubMed  Google Scholar 

  5. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thompson JD (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882. https://doi.org/10.1093/nar/25.24.4876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  9. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/BF01734359

    Article  CAS  PubMed  Google Scholar 

  10. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20:406–416. https://doi.org/10.1093/sysbio/20.4.406

    Article  Google Scholar 

  11. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  12. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.2307/2408678

    Article  PubMed  Google Scholar 

  13. Richter M, Rossello-Mora R, Glöckner FO, Peplies J (2016) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931. https://doi.org/10.1093/bioinformatics/btv681

    Article  CAS  PubMed  Google Scholar 

  14. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  Google Scholar 

  15. Zhi XY, Jiang Z, Yang LL, Huang Y (2017) The underlying mechanisms of genetic innovation and speciation in the family Corynebacteriaceae: a phylogenomics approach. Mol Phylogenet Evol 107:246–255. https://doi.org/10.1016/j.ympev.2016.11.00

    Article  CAS  PubMed  Google Scholar 

  16. Jeong YS, Kang W, Sung H et al (2020) Flammeovirga pectinis sp. Nov., isolated from the gut of the Korean scallop, Patinopecten yessoensis. Int J Syst Evol Microbiol 70:499–504. https://doi.org/10.1099/ijsem.0.003783

    Article  CAS  PubMed  Google Scholar 

  17. Tang SK, Wang Y, Chen Y, Lou K, Cao LL, Xu LH, Li WJ (2009) Zhihengliuella alba sp. Nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 59:2025–2031. https://doi.org/10.1099/ijs.0.007344-0

    Article  CAS  PubMed  Google Scholar 

  18. Lechevalier MP, Lechevalier HA (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443. https://doi.org/10.1099/00207713-20-4-435

    Article  CAS  Google Scholar 

  19. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:1–6

    Google Scholar 

  20. Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 48:459–470. https://doi.org/10.1111/j.1365-2672.1980.tb01036.x

    Article  CAS  Google Scholar 

  21. Xie CH, Yokota A (2003) Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349. https://doi.org/10.2323/jgam.49.345

    Article  CAS  PubMed  Google Scholar 

  22. Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of cellulomonas, oerskovia and related taxa. J Appl Bacteriol 47:87–95

    Article  CAS  Google Scholar 

  23. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the Ad-hoccommittee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464. https://doi.org/10.1099/00207713-37-4-463

    Article  Google Scholar 

  24. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57(1):81–91. https://doi.org/10.1099/ijs.0.64483-0

    Article  CAS  PubMed  Google Scholar 

  25. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466. https://doi.org/10.1099/ijsem.0.002516

    Article  CAS  PubMed  Google Scholar 

  26. Manjeet K, Madhuprakash J, Mormann M, Moerschbacher BM, Podile AR (2019) A carbohydrate binding module-5 is essential for oxidative cleavage of chitin by a multi-modular lytic polysaccharide monooxygenase from Bacillus thuringiensis serovar kurstaki. Int J Biol Macromol 127:649–656. https://doi.org/10.1016/j.ijbiomac.2019.01.183

    Article  CAS  PubMed  Google Scholar 

  27. Ewing TA, Gygli G, Fraaije MW, van Berkel WJH (2020) Vanillyl alcohol oxidase. Enzymes 47:87–116. https://doi.org/10.1016/bs.enz.2020.05.003

    Article  CAS  PubMed  Google Scholar 

  28. Muangpat P, Meesil W, Ngoenkam J, Teethaisong Y, Thummeepak R, Sitthisak S, Tandhavanant S, Chantratita N, Bode HB, Vitta A, Thanwisai A (2022) Genome analysis of secondary metabolite-biosynthetic gene clusters of Photorhabdus akhurstii subsp. akhurstii and its antibacterial activity against antibiotic-resistant bacteria. PLoS ONE 17(9):e0274956. https://doi.org/10.1371/journal.pone.0274956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Spraker JE, Wiemann P, Baccile JA, Venkatesh N, Schumacher J, Schroeder FC, Sanchez LM, Keller NP (2018) Conserved responses in a war of small molecules between a plant-pathogenic bacterium and fungi. mBio 9(3):e00820-18. https://doi.org/10.1128/mBio.00820-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Buntin K, Rachid S, Scharfe M, Blöcker H, Weissman KJ, Müller R (2008) Production of the antifungal isochromanone ajudazols A and B in Chondromyces crocatus Cm c5: biosynthetic machinery and cytochrome P450 modifications. Angew Chem Int Ed Engl 47(24):4595–9. https://doi.org/10.1002/anie.200705569

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Major Science and Technology Projects of Yunnan Province (202202AE090015; 202002AA100007), Basic Research Project of Yunnan Province (202001BB050025) and the Top Young Talents of “ten thousand talents plan” in Yunnan Province, China, and the rural revitalization project of Serving Yunnan (CZ22624401).

Author information

Authors and Affiliations

Authors

Contributions

MYZ, JYZ, and LLL, MGL, CSK and SKT designed the study, carried out the experiments and the data analysis, wrote and revised the manuscript. ZGD, CL, JT, SGL, JYL, PWY, XDL, LYF, and ZFS participated in the data analysis and revised the manuscript. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Le-Le Li, Chui-Si Kong or Shu-Kun Tang.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 324 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, MY., Zhao, JY., Li, LL. et al. Chitinolyticbacter albus sp. Nov., A Novel Chitin-Degrading Bacterium Isolated from Ancient Wood Rhizosphere Soil. Curr Microbiol 80, 225 (2023). https://doi.org/10.1007/s00284-023-03333-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03333-w

Navigation