Skip to main content
Log in

Repurposing CD5789 as an Antimicrobial Agent Against MRSA and Its High Resistant Phonotypes

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) poses a great threat to human health, and the formation of biofilm and persister cells make the situation even worse. Drug repurposing is an effective way to solve this problem by shortening the drug development times and reducing the research costs. In this study, CD5789 (trifarotene), a fourth-generation retinoid to be approved by the FDA in 2019 for the topical acne vulgaris regimens, was exhibited antimicrobial activity against MRSA type strains and its clinical isolates with the minimal concentration (MIC) of 2–4 μg/mL and 4–16 μg/mL, respectively, in a dose-dependent manner. By crystal violet staining, we found that CD5789 could inhibit the biofilm formation by MRSA and could further eradicate the pre-formed biofilm at the concentration of 8 μg/mL. By checkerboard dilution assay, sub-MIC of CD5789 showed synergistic antimicrobial effects with sub-MIC of gentamycin against MRSA type strains as well as clinical isolates. In addition, CD5789 also exhibited effective bactericidal activity against MRSA persister cells at the concentration of 8 ~ 16 μg/mL. Extremely low cytotoxicity of CD5789 was observed by CCK-8 assay indicated the well tolerability to human body. In all, CD5789 has the potential to be an alternative for the treatment of refractory MRSA-related infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Lakhundi S, Zhang K (2018) Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev 31:e00020-e118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li G, Walker MJ, De Oliveira DMP (2022) Vancomycin resistance in Enterococcus and Staphylococcus aureus. Microorganisms 11:24

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tuon FF, Suss PH, Telles JP et al (2023) Antimicrobial treatment of Staphylococcus aureus biofilms. Antibiotics (Basel) 12:87

    Article  CAS  PubMed  Google Scholar 

  4. Hoiby N, Bjarnsholt T, Givskov M et al (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332

    Article  PubMed  Google Scholar 

  5. Chang J, Lee RE, Lee W (2020) A pursuit of Staphylococcus aureus continues: a role of persister cells. Arch Pharm Res 43:630–638

    Article  CAS  PubMed  Google Scholar 

  6. Sahukhal GS, Pandey S, Elasri MO (2017) msaABCR operon is involved in persister cell formation in Staphylococcus aureus. BMC Microbiol 17:218

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kaul G, Shukla M, Dasgupta A et al (2019) Update on drug-repurposing: is it useful for tackling antimicrobial resistance? Future Microbiol 14:829–831

    Article  CAS  PubMed  Google Scholar 

  8. Younis W, Thangamani S, Seleem MN (2015) Repurposing non-antimicrobial drugs and clinical molecules to treat bacterial infections. Curr Pharm Des 21:4106–4111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schwartz L, Bochter MS, Simoni A et al (2023) Repurposing HDAC inhibitors to enhance ribonuclease 4 and 7 expression and reduce urinary tract infection. Proc Natl Acad Sci U S A 120:e2213363120

    Article  CAS  PubMed  Google Scholar 

  10. Scott LJ (2019) Trifarotene: first approval. Drugs 79:1905–1909

    Article  CAS  PubMed  Google Scholar 

  11. Naik PP (2022) Trifarotene: a novel therapeutic option for acne. Dermatol Res Pract 2022:1504303

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cosio T, Di Prete M, Gaziano R et al (2021) Trifarotene: a current review and rerspectives in dermatology. Biomedicines 9:237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Clinical and Laboratory Standards Institute (CLSI) (2020) Performance standard for antimicrobial susceptibility testing; thirtieth informational supplement. CLSI Document (M100Ed30). Wayne.

  14. Tan F, She P, Zhou L et al (2019) Bactericidal and anti-biofilm activity of the retinoid compound CD437 against Enterococcus faecalis. Front Microbiol 10:2301

    Article  PubMed  PubMed Central  Google Scholar 

  15. Trombetta RP, Dunman PM, Schwarz EM et al (2018) A high-throughput screening approach to repurpose FDA-approved drugs for bactericidal applications against Staphylococcus aureus small-colony variants. mSphere 3:e00422-e518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qu L, She P, Wang Y et al (2016) Effects of norspermidine on Pseudomonas aeruginosa biofilm formation and eradication. Microbiologyopen 5:402–412

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kim W, Zou G, Hari TPA et al (2019) A selective membrane-targeting repurposed antibiotic with activity against persistent methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A 116:16529–16534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu Y, Jia Y, Yang K et al (2020) Metformin restores tetracyclines susceptibility against multidrug resistant bacteria. Adv Sci (Weinh) 7:1902227

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, She P, Xu L et al (2022) Anti-hepatitis C virus drug simeprevir: a promising antimicrobial agent against MRSA. Appl Microbiol Biotechnol 106:2689–2702

    Article  CAS  PubMed  Google Scholar 

  20. Lázár V, Snitser O, Barkan D et al (2022) Antibiotic combinations reduce Staphylococcus aureus clearance. Nature 610:540–546

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kato F, Nakatsu Y, Murano K et al (2021) Antiviral activity of CD437 against mumps virus. Front Microbiol 12:751909

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kwak SH, Nam GS, Bae SH et al (2019) Effect of specific retinoic acid receptor agonists on noise-induced hearing loss. Int J Environ Res Public Health 16:3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim W, Zhu W, Hendricks GL et al (2018) A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature 556:103–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. She P, Li S, Zhou L et al (2020) Insights into idarubicin antimicrobial activity against methicillin-resistant Staphylococcus aureus. Virulence 11:636–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen L, Li H, Wen H et al (2020) Biofilm formation in Acinetobacter baumannii was inhibited by PAβN while it had no association with antibiotic resistance. Microbiologyopen 9:e1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. de Breij A, Riool M, Cordfunke RA et al (2018) The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med 10:eaan4044

    Article  PubMed  Google Scholar 

  27. Liu Y, She P, Xu L et al (2021) Antimicrobial, antibiofilm, and anti-persister activities of penfluridol against Staphylococcus aureus. Front Microbiol 12:727692

    Article  PubMed  PubMed Central  Google Scholar 

  28. Peng Q, Tang X, Dong W et al (2022) A review of biofilm formation of Staphylococcus aureus and its regulation mechanism. Antibiotics (Basel) 12:12

    Article  PubMed  Google Scholar 

  29. Coates ARM, Hu Y, Holt J et al (2020) Antibiotic combination therapy against resistant bacterial infections: synergy, rejuvenation and resistance reduction. Expert Rev Anti Infect Ther 18:5–15

    Article  CAS  PubMed  Google Scholar 

  30. Li Z, She P, Liu Y et al (2023) Triple combination of SPR741, clarithromycin, and erythromycin against Acinetobacter baumannii and its tolerant phenotype. J Appl Microbiol 134:lxac023

    Article  PubMed  Google Scholar 

  31. Brumfiel CM, Patel MH, Bell KA et al (2021) Assessing the safety and efficacy of trifarotene in the treatment of Acne vulgaris. Ther Clin Risk Manag 17:755–763

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hatlen TJ, Miller LG (2021) Staphylococcal skin and soft tissue infections. Infect Dis Clin North Am 35:81–105

    Article  PubMed  Google Scholar 

  33. Tan J, Thiboutot D, Popp G et al (2019) Randomized phase 3 evaluation of trifarotene 50 μg/g cream treatment of moderate facial and truncal acne. J Am Acad Dermatol 80:1691–1699

    Article  CAS  PubMed  Google Scholar 

  34. Eichenfield L, Kwong P, Lee S et al (2022) Advances in topical management of adolescent facial and truncal acne: a phase 3 pooled analysis of safety and efficacy of trifarotene 0.005% cream. J Drugs Dermatol 21:582–586

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to She Pengfei (Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University) with providing bacterial strains and technical support.

Funding

The authors are grateful for the funding support by Hunan Provincial Natural Science Foundation of China (Grant No. 2023JJ30060), and the Changsha Science and Technology Bureau Scientific Research Project (Grant No. Kq2004155).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ZH, and ZW; Methodology: ZH, BZ, ZX, CP, and ZQ; Writing Original Draft Preparation: ZH, ZW, and YX; Writing Review and Editing: ZH, and ZW; Supervision: ZW.

Corresponding author

Correspondence to Zhiqiang Wu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 508 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Z., Zhang, B., Xiao, Z. et al. Repurposing CD5789 as an Antimicrobial Agent Against MRSA and Its High Resistant Phonotypes. Curr Microbiol 80, 230 (2023). https://doi.org/10.1007/s00284-023-03332-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03332-x

Navigation