Skip to main content

Advertisement

Log in

The Role of MexCD-OprJ and MexEF-OprN Efflux Systems in the Multiple Antibiotic Resistance of Pseudomonas aeruginosa Isolated from Clinical Samples

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Increasing antimicrobial resistance and the development of multi-drug resistant (MDR) Pseudomonas aeruginosa is dependent on the expression of efflux pumps. This study aimed to investigate the role of overexpression of MexCD-OprJ and MexEF-OprN efflux pumps in reduced susceptibility to antimicrobial agents among P. aeruginosa strains. Totally, 100 clinical isolates of P. aeruginosa were collected from patients and the strains were identified by standard diagnostic tests. The MDR isolates were detected using the disk agar diffusion method. The expression levels of MexCD-OprJ and MexEF-OprN efflux pumps were evaluated by the real-time PCR. Forty-one isolates showed MDR phenotype, while piperacillin-tazobactam and levofloxacin were the most- and least-effective antibiotics, respectively. Also, all 41 MDR isolates showed a more than tenfold increase in the expression of mexD and mexF genes. In this study, a significant relationship was observed between the rate of antibiotic resistance, the emergence of MDR strains, and increasing the expression levels of MexEF-OprN and MexCD-OprJ efflux pumps (P < 0.05). Efflux systems mediated resistance was a noteworthy mechanism causative to multidrug resistance in P. aeruginosa clinical isolates. The study results demonstrated mexE and mexF overexpression as the primary mechanism conferring in the emergence of MDR phenotypes among P. aeruginosa strains. In addition, we also show that piperacillin/tazobactam exhibited a stronger ability in the management of infections caused by MDR P. aeruginosa in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article.

References

  1. Namjilsuren S (2019) The importance of RND-type efflux pumps in the interactions of Pseudomonas aeruginosa with 4-methoxybenzaldehyde. Honors Theses, p 639. https://aquila.usm.edu/honors_theses/639

  2. Pang ZR, Raudonis R, Glick BR, Lin TJ, Cheng Z (2019) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biothechnol Adv 37(1):177–192. https://doi.org/10.1016/j.biotechadv.2018.11.013

    Article  CAS  Google Scholar 

  3. Moradali MF, Ghods S, Rehm BH (2017) Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 7:39. https://doi.org/10.3389/fcimb.2017.00039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arabestani MR, Rajabpour M, Yousefi Mashouf R, Alikhani MY, Mousavi SM (2015) Expression of efflux pump MexAB-OprM and OprD of Pseudomonas aeruginosa strains isolated from clinical samples using qRT-PCR. Arch Iran Med 18(2):102–108

    PubMed  Google Scholar 

  5. Kumar A, Schweizer HP (2011) Evidence of MexT-independent overexpression of MexEF-OprN multidrug efflux pump of Pseudomonas aeruginosa in presence of metabolic stress. PLoS ONE 6(10):e26520. https://doi.org/10.1371/journal.pone.0026520

  6. Fernando DM, Kumar A (2013) Resistance-nodulation-division multidrug efflux pumps in gram-negative bacteria: role in virulence. Antibiotics 2(1):163–181. https://doi.org/10.3390/antibiotics2010163

  7. Nikokar I, Tishayar A, Flakiyan Z, Alijani K, Rehana-Banisaeed S, Hossinpour M, Amir-Alvaei S, Araghian A (2013) Antibiotic resistance and frequency of class 1 integrons among Pseudomonas aeruginosa, isolated from burn patients in Guilan. Iran Iran J Microbiol 5(1):36–41

    PubMed  Google Scholar 

  8. Altinöz E, Altuner E (2019) Antibiotic resistance and efflux pumps. Int J Innov Res Rev 3(2):1–9

    Google Scholar 

  9. Lamut A, Peterlin-Masic L, Kikelj D, Tomasic T (2019) Efflux pump inhibitors of clinically relevant multidrug resistant bacteria. Med Res Rev 39(6):2460–2504. https://doi.org/10.1002/med.21591

    Article  CAS  PubMed  Google Scholar 

  10. Horna G, Lopez M, Guerra H, Saenz Y, Ruiz J (2018) Interplay between MexAB-OprM and MexEF-OprN in clinical isolates of Pseudomonas aeruginosa. Sci Rep 8(1):16463. https://doi.org/10.1038/s41598-018-34694-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fraud S, Campigotto AJ, Chen Z, Poole K (2008) MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor. Antimicrob Agents Chemother 52(12):4478–4482. https://doi.org/10.1128/AAC.01072-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suresh M, Narayanan N, Vimal KP, Jayasree PR, Kumar P (2019) Mutational and phylogenetic analysis of nfxB gene in multidrug-resistant clinical isolates of Pseudomonas aeruginosa hyperexpressing MexCD-OprJ efflux pump. Adv Microbiol 9(12):993–999. https://doi.org/10.4236/aim.2019.912064

    Article  CAS  Google Scholar 

  13. Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T (2000) Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44(12):3322–3327. https://doi.org/10.1128/aac.44.12.3322-3327.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Purssell A, Poole K (2013) Functional characterization of the NfxB repressor of the mexCD-oprJ multidrug efflux operon of Pseudomonas aeruginosa. Microbiol (Reading) 159(Pt 10):2058–2073. https://doi.org/10.1099/mic.0.069286-0

    Article  CAS  Google Scholar 

  15. Juarez P, Broutin I, Bordi C, Plesiat P, Llanes C (2018) Constitutive activation of MexT by amino acid substitutions results in MexEF-OprN overproduction in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.02445-17

  16. Llanes C, Kohler T, Patry I, Dehecq B, van Delden C, Plesiat P (2011) Role of the MexEF-OprN efflux system in low-level resistance of Pseudomonas aeruginosa to ciprofloxacin. Antimicrob Agents Chemother 55(12):5676–5684. https://doi.org/10.1128/AAC.00101-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sahm DF, Weissfeld A, Trevino E (2002) Baily and scott’s diagnostic microbiology. Mosby, St Louis

    Google Scholar 

  18. Spilker T, Coenye T, Vandamme P, LiPuma JJ (2004) PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol 42(5):2074–2079. https://doi.org/10.1128/JCM.42.5.2074-2079.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Performance Standards for Antimicrobial Susceptibility Testing (2018) Clinical and Laboratory Standards Institute (CLSI)

  20. Alcalde-Rico M, Olivares-Pacheco J, Alvarez-Ortega C, Cámara M, Martínez JL (2018) Role of the multidrug resistance efflux pump MexCD-OprJ in the Pseudomonas aeruginosa quorum sensing response. Front Microbiol. https://doi.org/10.3389/fmicb.2018.02752

    Article  PubMed  PubMed Central  Google Scholar 

  21. Martis N, Leroy S, Blanc V (2014) Colistin in multi-drug resistant Pseudomonas aeruginosa blood-stream infections: a narrative review for the clinician. J Infect 69(1):1–12. https://doi.org/10.1016/j.jinf.2014.03.001

    Article  PubMed  Google Scholar 

  22. Rocha AJ, Barsottini M, Rocha RR, Laurindo MV, Moraes F, Rocha S (2019) Pseudomonas aeruginosa: virulence factors and antibiotic resistance genes. Brazil Arch Biol Technol 62:e19180503. https://doi.org/10.1590/1678-4324-2019180503

    Article  CAS  Google Scholar 

  23. Reza A, Sutton JM, Rahman K (2019) Effectiveness of efflux pump inhibitors as biofilm disruptors and resistance breakers in gram-negative (ESKAPEE) bacteria. Antibiotics 8(4):229. https://doi.org/10.3390/antibiotics8040229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goli HR, Nahaei MR, Rezaee MA, Hasani A, Kafil HS, Aghazadeh M, Nikbakht M, Khalili Y (2018) Role of MexAB-OprM and MexXY-OprM efflux pumps and class 1 integrons in resistance to antibiotics in burn and intensive care unit isolates of Pseudomonas aeruginosa. J Infect Public Health 11(3):364–372. https://doi.org/10.1016/j.jiph.2017.09.016

    Article  PubMed  Google Scholar 

  25. Yaslianifard S, Mirzaii M, Taheriniya A, Zamani S, Zamharir ZA, Behnam B, Soltan-Dallal MM, Soleimani A, Yaslianifard S (2018) Detection of mex efflux pumps in Pseudomonas aeruginosa using a multiplex phenotypic and genotypic procedure in an iranian referral hospital. Int J Adv Microbiol Health Res 2(1):1–16

    Google Scholar 

  26. Shigemura K, Osawa K, Kato A, Tokimatsu I, Arakawa S, Shirakawa T, Fujisawa M (2015) Association of overexpression of efflux pump genes with antibiotic resistance in Pseudomonas aeruginosa strains clinically isolated from urinary tract infection patients. J Antibiot (Tokyo) 68(9):568–572. https://doi.org/10.1038/ja.2015.34

    Article  CAS  PubMed  Google Scholar 

  27. Zahedi Bialvaei A, Rahbar M, Hamidi-Farahani R, Asgari A, Esmailkhani A, Soleiman-Meigooni S (2021) Expression of RND efflux pumps mediated antibiotic resistance in Pseudomonas aeruginosa clinical strains. Microb Pathog 153:104789. https://doi.org/10.1016/j.micpath.2021.104789

    Article  CAS  PubMed  Google Scholar 

  28. Talebi-Taher M, Majidpour A, Gholami A, Rasouli-Kouhi S, Adabi M (2016) Role of efflux pump inhibitor in decreasing antibiotic cross-resistance of Pseudomonas aeruginosa in a burn hospital in Iran. J Infect Dev Count 10(6):600–604. https://doi.org/10.3855/jidc.7619

    Article  CAS  Google Scholar 

  29. Zahedani SS, Tahmasebi H, Jahantigh M (2021) Coexistence of virulence factors and efflux pump genes in clinical isolates of Pseudomonas aeruginosa: analysis of biofilm-forming strains from Iran. Int J Microbiol. https://doi.org/10.1155/2021/5557361

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gajdács M, Baráth Z, Kárpáti K, Szabó D, Usai D, Zanetti S, Donadu MG (2021) No correlation between biofilm formation, virulence factors, and antibiotic resistance in Pseudomonas aeruginosa: results from a laboratory-based in vitro study. Antibiotics 10(9):1134. https://doi.org/10.3390/antibiotics10091134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Al Rashed N, Joji RM, Saeed NK, Bindayna KMJIJOA, Research BM (2020) Detection of overexpression of efflux pump expression in fluoroquinolone-resistant Pseudomonas aeruginosa isolates. Int J Appl Basic Med Res 10(1):37. https://doi.org/10.4103/ijabmr.IJABMR_90_19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gotoh N, Tsujimoto H, Tsuda M, Okamoto K, Nomura A, Wada T, Nakahashi M, Nishino T (1998) Characterization of the MexC-MexD-OprJ multidrug efflux system in ΔmexA-mexB-oprM mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 42(8):1938–1943. https://doi.org/10.1128/AAC.42.8.1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Henriquez T, Baldow T, Lo YK, Weydert D, Brachmann A, Jung H (2020) Involvement of MexS and MexEF-OprN in resistance to toxic ion chelators in Pseudomonas putida KT2440. Microorganisms 8(11):1782. https://doi.org/10.3390/microorganisms8111782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the laboratory staffs of studied hospitals for assist in the collection of the clinical isolates.

Funding

This work was financially supported by Mazandaran University of Medical Sciences, Sari, Iran, with Grant No. 7064.

Author information

Authors and Affiliations

Authors

Contributions

All authors (ZJ, MG. ME, HG) were equally contributed in preparing this article (the conception and design of the study, Data analysis and Manuscript drafting, editing). All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hamid Reza Goli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics Approval

This research was approved by ethics committee of Mazandaran University of Medical Sciences, Sari, Iran under the ethics application IR.MAZUMS.REC.1399.181.

Consent to Participate

This study was conducted in accordance with the Declaration of Helsinki, however written informed consent form was provided by the patients or a close relative before hospitalization, and categorizing information of each sample was reserved secret.

Consent to Publish

Informed consent was obtained from all individual participants included in the study for publication of this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamal, Z., Gholami, M., Ebrahimzadeh, M.A. et al. The Role of MexCD-OprJ and MexEF-OprN Efflux Systems in the Multiple Antibiotic Resistance of Pseudomonas aeruginosa Isolated from Clinical Samples. Curr Microbiol 80, 221 (2023). https://doi.org/10.1007/s00284-023-03330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03330-z

Navigation