Skip to main content

Advertisement

Log in

Identification of Potential Drug Targets in Erythrocyte Invasion Pathway of Plasmodium falciparum

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The erythrocyte invasion phase plays a critical role in multiplication, sexual determination, and drug resistance in Plasmodium falciparum. In order to identify the critical genes and pathways in the erythrocyte invasion phase, the gene set (GSE129949) and the RNA-Seq count data for the W2mef strain were used for further analysis. An integrative bioinformatics study was performed to scrutinize genes as potential drug targets. 487 differentially expressed genes (DEGs) with an adjusted P value < 0.001 enriched 47 Gene Ontology (GO) terms that were over-represented based on hyper-geometric analysis P value < 0.01. Protein–Protein interaction network analysis was done using DEGs with higher confidence interactions (PPI score threshold = 0.7). MCODE and cytoHubba apps were utilized to define the hub proteins and rank them based on multiple topological analyses and MCODE scores. Furthermore, Gene Set Enrichment Analysis (GSEA) was carried out by using 322 gene sets from the MPMP database. The genes involved in multiple significant gene sets were determined by leading-edge analysis. Our study identified six genes encoding proteins that could be potential drug targets involved in the erythrocyte invasion phase related to merozoites motility, cell-cycle regulation, G-dependent protein kinase phosphorylation in schizonts, control of microtubule assembly, and sexual commitment. The druggability of those proteins was calculated based on the DCI (Drug Confidence Index) and predicted binding pockets’ values. The protein that showed the best binding pocket value was subjected to deep learning-based virtual screening. The study identified the best small molecule inhibitors in terms of drug-binding score against the proteins for inhibitor identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cibulskis RE, Alonso P, Aponte J et al (2016) Malaria: global progress 2000–2015 and future challenges. Infect Dis Poverty 5:61. https://doi.org/10.1186/s40249-016-0151-8

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nkumama IN, O’meara WP, Osier FH (2017) Changes in malaria epidemiology in Africa and new challenges for elimination. Trends Parasitol 33:128–140. https://doi.org/10.1016/j.pt.2016.11.006

    Article  PubMed  Google Scholar 

  3. World Health Organization. World malaria report 2022. World Health Organization, 2022.

  4. Acharya P, Garg M, Kumar P, Munjal A, Raja KD (2017) Host–parasite interactions in human malaria: clinical implications of basic research. Front Microbiol 8:889. https://doi.org/10.3389/fmicb.2017.00889

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang M, Wang C, Otto TD, Oberstaller J, Liao X, Adapa SR, Udenze K, Bronner IF, Casandra D, Mayho M, Brown J (2018) Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science 4:360. https://doi.org/10.1126/science.aap7847

    Article  CAS  Google Scholar 

  6. WHO Malaria Report (2020)

  7. Miller LH, Baruch DI, Marsh K, Doumbo OK (2002) The pathogenic basis of malaria. Nature 415:673. https://doi.org/10.1038/415673a

    Article  CAS  PubMed  Google Scholar 

  8. Cowman AF, Berry D, Baum J (2012) The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J Cell Biol 198(6):961–971. https://doi.org/10.1083/jcb.201206112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lopaticki S et al (2011) Reticulocyte and erythrocyte binding-like proteins function cooperatively in invasion of human erythrocytes by malaria parasites. Infect Immun 79:1107–1117. https://doi.org/10.1128/IAI.01021-10

    Article  CAS  PubMed  Google Scholar 

  10. Baum J, Maier AG, Good RT, Simpson KM, Cowman AF (2005) Invasion by P. falciparum merozoites suggests a hierarchy of molecular interactions. PLoS Path 1:e37. https://doi.org/10.1371/journal.ppat.0010037

    Article  CAS  Google Scholar 

  11. Campino S et al (2018) A forward genetic screen reveals a primary role for Plasmodium falciparum Reticulocyte Binding Protein Homologue 2a and 2b in determining alternative erythrocyte invasion pathways. PLoS Path 14:e1007436. https://doi.org/10.1371/journal.ppat.1007436

    Article  CAS  Google Scholar 

  12. Ahouidi AD et al (2016) Malaria vaccine development: focusing field erythrocyte invasion studies on phenotypic diversity: the West African Merozoite Invasion Network (WAMIN). Trends Parasitol 32:274–283. https://doi.org/10.1016/j.pt.2015.11.009

    Article  PubMed  Google Scholar 

  13. Persson KE et al (2008) Variation in use of erythrocyte invasion pathways by Plasmodium falciparum mediates evasion of human inhibitory antibodies. J Clin Invest 118:342–351. https://doi.org/10.1172/JCI32138

    Article  CAS  PubMed  Google Scholar 

  14. Wright GJ, Rayner JC (2014) Plasmodium falciparum erythrocyte invasion: combining function with immune evasion. PLoS Pathog 10(3):e1003943. https://doi.org/10.1371/journal.ppat.1003943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Josling GA, Williamson KC, Llinás M (2018) Regulation of sexual commitment and gametocytogenesis in malaria parasites. Annu Rev Microbiol 72:501–519. https://doi.org/10.1146/annurev-micro-090817-062712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dolan SA, Miller LH, Wellems TE (1990) Evidence for a switching mechanism in the invasion of erythrocytes by Plasmodium falciparum. J Clin Investig 86(2):618–624. https://doi.org/10.1172/JCI114753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stubbs J, Simpson KM, Triglia T, Plouffe D, Tonkin CJ, Duraisingh MT, Maier AG, Winzeler EA, Cowman AF (2005) Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes. Science 309(5739):1384–1387. https://doi.org/10.1126/science.1115257

    Article  CAS  PubMed  Google Scholar 

  18. Nyarko PB, Tarr SJ, Aniweh Y, Stewart LB, Conway DJ, Awandare GA (2020) Investigating a Plasmodium falciparum erythrocyte invasion phenotype switch at the whole transcriptome level. Sci Rep 10(1):1–10. https://doi.org/10.1038/s41598-019-56386-y

    Article  CAS  Google Scholar 

  19. Love MI, Anders S, Huber W (2016) DESeq2 vignette. Genome Biol. https://doi.org/10.1101/2022.08.29.505720

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhu A, Ibrahim JG, Love MI (2019) Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics 35(12):2084–2092. https://doi.org/10.1093/bioinformatics/bty895

    Article  CAS  PubMed  Google Scholar 

  21. Thissen D, Steinberg L, Kuang D (2002) Quick and easy implementation of the Benjamini-Hochberg procedure for controlling the false positive rate in multiple comparisons. J Educ Behav Stat 27(1):77–83. https://doi.org/10.3102/10769986027001077

    Article  Google Scholar 

  22. Falcon S, Gentleman R (2007) Using GO stats to test gene lists for GO term association. Bioinformatics 23(2):257–258. https://doi.org/10.1093/bioinformatics/btl567

    Article  CAS  PubMed  Google Scholar 

  23. Carlson M (2019) Genome wide annotation for Malaria org.Pf.plasmo.db version 3.8.2.

  24. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613. https://doi.org/10.1093/nar/gky1131

    Article  CAS  PubMed  Google Scholar 

  25. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. https://doi.org/10.1186/1752-0509-8-S4-S11

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4(1):1–27. https://doi.org/10.1186/1471-2105-4-2

    Article  Google Scholar 

  28. Agüero F, Al-Lazikani B, Aslett M, Berriman M, Buckner FS, Campbell RK, Carmona S, Carruthers IM, Chan AE, Chen F, Crowther GJ (2008) Genomic-scale prioritization of drug targets: the TDR Targets database. Nat Rev Drug Discovery 7(11):900–907. https://doi.org/10.1038/nrd2684

    Article  CAS  PubMed  Google Scholar 

  29. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook, pp 571–607. https://doi.org/10.1385/1-59259-890-0:571.

  30. Krogh A, Larsson B, Von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580. https://doi.org/10.1006/jmbi.2000.4315

    Article  CAS  PubMed  Google Scholar 

  31. Ginsburg H, Abdel-Haleem AM (2016) Malaria parasite metabolic pathways (MPMP) upgraded with targeted chemical compounds. Trends Parasitol 32(1):7–9. https://doi.org/10.1016/j.pt.2015.10.003

    Article  PubMed  Google Scholar 

  32. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Merico D, Isserlin R, Stueker O, Emili A, Bader GD (2010) Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS ONE 5(11):e13984. https://doi.org/10.1371/journal.pone.0013984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Volkamer A, Kuhn D, Rippmann F, Rarey M (2012) DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics 28(15):2074–2075. https://doi.org/10.1093/bioinformatics/bts310

    Article  CAS  PubMed  Google Scholar 

  35. Huang K, Fu T, Glass LM, Zitnik M, Xiao C, Sun J (2020) DeepPurpose: a deep learning library for drug–target interaction prediction. Bioinformatics 36(22–23):5545–5547. https://doi.org/10.1093/bioinformatics/btaa1005

    Article  CAS  PubMed Central  Google Scholar 

  36. Gilson MK et al (2016) BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res. https://doi.org/10.1093/nar/gkv1072

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mahmud S, Paul GK, Biswas S, Kazi T, Mahbub S, Mita MA, Afrose S, Islam A, Ahaduzzaman S, Hasan MR, Shimu MSS (2022) phytochemdb: a platform for virtual screening and computer-aided drug designing. Database. https://doi.org/10.1093/database/baac002

    Article  PubMed  PubMed Central  Google Scholar 

  38. QikProp (2009) QikProp, version 3.2.

  39. Van Biljon R, Van Wyk R, Painter HJ, Orchard L, Reader J, Niemand J, Llinás M, Birkholtz LM (2019) Hierarchical transcriptional control regulates Plasmodium falciparum sexual differentiation. BMC Genomics 20(1):1–6. https://doi.org/10.1186/s12864-019-6322-9

    Article  Google Scholar 

  40. Walzer KA, Kubicki DM, Tang X, Chi JT (2018) Single-cell analysis reveals distinct gene expression and heterogeneity in male and female Plasmodium falciparum gametocytes. Msphere 3(2):e00130-e218. https://doi.org/10.1128/mSphere.00130-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Martins RM, Macpherson CR, Claes A, Scheidig-Benatar C, Sakamoto H, Yam XY, Preiser P, Goel S, Wahlgren M, Sismeiro O, Coppée JY (2017) An ApiAP2 member regulates expression of clonally variant genes of the human malaria parasite Plasmodium falciparum. Sci Rep 7(1):1. https://doi.org/10.1038/s41598-017-12578-y

    Article  CAS  Google Scholar 

  42. Ferreira JL, Heincke D, Wichers JS, Liffner B, Wilson DW, Gilberger TW (2020) The dynamic roles of the inner membrane complex in the multiple stages of the malaria parasite. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2020.611801

    Article  PubMed  PubMed Central  Google Scholar 

  43. More KR, Kaur I, Giai Gianetto Q, Invergo BM, Chaze T, Jain R, Huon C, Gutenbrunner P, Weisser H, Matondo M, Choudhary JS (2020) Phosphorylation-Dependent assembly of a 14–3-3 mediated signaling complex during Red blood cell invasion by Plasmodium falciparum merozoites. MBio 11(4):e01287-e1320. https://doi.org/10.1128/mBio.01287-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Anand G, Reddy KS, Pandey AK, Mian SY, Singh H, Mittal SA, Amlabu E, Bassat Q, Mayor A, Chauhan VS, Gaur D (2016) A novel Plasmodium falciparum rhoptry associated adhesin mediates erythrocyte invasion through the sialic-acid dependent pathway. Sci Rep 6(1):1–7. https://doi.org/10.1038/srep29185

    Article  CAS  Google Scholar 

  45. Arumugam TU, Takeo S, Yamasaki T, Thonkukiatkul A, Miura K, Otsuki H et al (2011) Discovery of GAMA, a Plasmodium falciparum merozoite micronemal protein, as a novel blood-stage vaccine candidate antigen. Infect Immun 79(11):4523–4532. https://doi.org/10.1128/IAI.05412-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Bioinformatics lab facility of the School of Biotechnology, KIIT Deemed to be University, Bhubaneswar during the course of work.

Funding

The project work is supported by the SERB-MATRICS project (MTR/2021/000191) from Department of Science and Technology, Govt. of India awarded to Dr. Rajani Kanta Mahapatra.

Author information

Authors and Affiliations

Authors

Contributions

MMK has developed the bioinformatics pipeline and performed the RNA-Seq data analysis. MMA contributed towards the druggability and virtual screening results. RKM supervised the whole study and corrected the manuscript.

Corresponding author

Correspondence to Rajani Kanta Mahapatra.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 229 kb)

Supplementary file2 (DOCX 45 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazan, M.M., Asmare, M.M. & Mahapatra, R.K. Identification of Potential Drug Targets in Erythrocyte Invasion Pathway of Plasmodium falciparum. Curr Microbiol 80, 165 (2023). https://doi.org/10.1007/s00284-023-03282-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03282-4

Navigation