Skip to main content
Log in

Biosorption and Symbiotic Potential of Horse Gram Rhizobia in Soils Contaminated with Cobalt

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The current study aims evaluation of biosorption and symbiotic potential of horse gram plants associated with rhizobia inspite of Cobalt (Co) metal stress, and these rhizobia strains play a pivotal role in the phytoremediation of Co heavy metal-contaminated soils. Horse gram rhizobial isolates HGR-4, HGR-6, HGR-13 and HGR-25 were able to tolerate 1000 µg g−1 Co supplemented in culture media and also 100 µg g−1 in Co supplemented soil. The plants nodulated with the isolates from the study have shown higher nodulation, nitrogen and leghaemoglobin content in the potted experiment on par with the control plants. Atomic absorption spectroscopic analysis of Co content in horse gram plants inoculated with these four isolates showed maximum biosorption of Co among the bacterial root nodules. Application of these strains can be potentially aid the phytoextraction of Co from contaminated soils on association with horse gram plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beladi M, Habibi D, Kashani A, Paknejad F, Nooralvandi T (2011) Phytoremediation of lead and copper by Sainfoiin (Onobrychis vicifolia): role of antioxidant enzymes and biochemical biomarkers. Am Eurasian J Agric Environ Sci 3:440–449

    Google Scholar 

  2. Dary M, Chamber PMA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330. https://doi.org/10.1016/j.jhazmat.2009.12.035

    Article  CAS  PubMed  Google Scholar 

  3. Krujatz F, Haarstrick A, N€ortemann B, Greis T, (2011) Assessing the toxic effects of nickel, cadmium and EDTA on growth of the plant growth-promoting rhizobacterium Pseudomonas brassicacearum. Water Air Soil Pollut. https://doi.org/10.1007/s11270-011-0944-0

    Article  Google Scholar 

  4. Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Env Stu 15:523–530

    CAS  Google Scholar 

  5. Rodionov DA, Hebbeln P, Gelfand MS, Eitinger T (2006) Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J Bacteriol 188:317–327. https://doi.org/10.1128/JB.188.1.317-327.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Macomber L, Hausinger RP (2011) Mechanisms of nickel toxicity in microorganisms. Metallomics 3:1153–1162. https://doi.org/10.1039/c1mt00063b

    Article  CAS  PubMed  Google Scholar 

  7. Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274. https://doi.org/10.1016/j.pbi.2009.04.009

    Article  CAS  PubMed  Google Scholar 

  8. Zohny EA (2002) Cobalt in alluvial Egyptian soils as affected by industrial activities. J Environ Sci 14:34–38

    CAS  Google Scholar 

  9. Abd-Alla MH, Bagy MK, EI-Enany AE, Bashoudy SR (2014) Activation of R. Tibeticum with flavonoid enhances nodulation, nitrogen fixation and growth of fenugreek (Trigonella foenumgraecum L.) grown in cobalt polluted soil. Arch Environ Contamin Toxicol 66:303–315. https://doi.org/10.1007/s00244-013-9980-7

    Article  CAS  Google Scholar 

  10. Oves M, Khan S, Qari H, Felemban N, Almeelbi T (2016) Heavy metals: biological importance and detoxification strategies. J Bioremed Biodegrad 7:334. https://doi.org/10.4172/2155-6199.1000334

    Article  CAS  Google Scholar 

  11. Hao X, Taghavi S, Xie P, Orbach MJ, Alwathnani HA, Rensing C, Wei GH (2014) Phytoremediation of heavy and transition metals aided by legume-rhizobia Symbiosis. Int J Phytoremediat 16:179–202. https://doi.org/10.1080/15226514.2013.773273

    Article  CAS  Google Scholar 

  12. Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M (2007) Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66:1670–1676. https://doi.org/10.1016/j.Chemosphere.2006.07.058

    Article  CAS  PubMed  Google Scholar 

  13. Vincent JM (1970) A manual for a practical study of root nodule bacteria. Blackwell Publications, Oxford

    Google Scholar 

  14. Edulamudi P, Antony Masilamani AJ, Vanga UR, Divi VRS, Konada VM (2021) Nickel tolerance and biosorption potential of rhizobia associated with horse gram [Macrotyloma uniflorum (Lam.) Verdc.]. Int J Phytoremediat 23:1184–1190. https://doi.org/10.1080/15226514.2021.1884182

    Article  CAS  Google Scholar 

  15. Tu JC, Ford RE, Garu CR (1970) Some factors affecting the nodulation and nodule efficiency in Soy beans infected by soybean mosaic virus. Phytopathology 60:1653–1656. https://doi.org/10.1094/Phyto-60-1653

    Article  Google Scholar 

  16. AOAC (1978) Official and tentative methods of analysis. Association of official Agricultural Chemists, Washington

    Google Scholar 

  17. Nicholas DJD, Maruyama Y, Fisher DJ (1962) The effect of cobalt deficiency on the utilization of nitrate nitrogen in Rhizobium. Biochem Biophys Acta 56:623

    Article  CAS  PubMed  Google Scholar 

  18. Mysliva-Kurdziel B, Prasad MNV, Strzalka K (2004) Photosynthesis in heavy metal stressed plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems. Springer, Berlin, pp 146–181

    Chapter  Google Scholar 

  19. Lipskaya A (1972) Accumulation of chlorophyll in chloroplasts of cucumber leaves under the effect of cobalt and manganese applied separately and together. Biol Nauki 15:90–94

    CAS  Google Scholar 

  20. Minz A, Asha KS, Rakesh K, Kumar B, Kumar R (2018) A review on importance of cobalt in crop growth and production. Int J Curr Microbiol Appl Sci 7:2978–2984

    Google Scholar 

  21. Vaseer SG, Rasheed M, Ansar M, Bibi Y, Shah S, Hassan A, Durani LA, Asif M, Husnain Z (2020) Cobalt application improves the growth and development of mung bean. Pak J Agric Res 33:303–310. https://doi.org/10.17582/journal.pjar/2020/33.2.303.310

    Article  Google Scholar 

  22. Awomi TA, Singh AK, Kumar M, Bordoloi LJ (2012) Effect of phosphorus, molybdenum and cobalt nutrition on yield and quality of mungbean (Vigna radiata L.) in acidic soil of Northeast India. Indian J Hill Farm 25(2):22–26

    Google Scholar 

  23. Ali B, Hayat S, Hayat Q, Ahmad A (2010) Cobalt stress affects nitrogen metabolism, photosynthesis and antioxidant system in chickpea (Cicer arietinum L.). J Plant Interact 3:223–231. https://doi.org/10.1080/17429140903370584

    Article  CAS  Google Scholar 

  24. Akbar FM, Zafar M, Hamid A, Ahmed M, Khaliq A, Riaz Khan M, Rehman Z (2013) Interactive effect of cobalt and nitrogen on growth, nodulation, yield and protein content of field grown pea. Hortic Environ Biotechnol 54:465–474. https://doi.org/10.1007/s13580-013-0001-6

    Article  CAS  Google Scholar 

  25. Atta-Aly MM (1998) Soaking summer squash seeds in low concentration of cobalt solution before sowing increased plant growth, femaleness and fruit yield via increasing plant ethylene level. J Plant Growth Regul 17:25–32. https://doi.org/10.1007/PL00007008

    Article  CAS  Google Scholar 

  26. Bakken AK, Synnes OM, Hansen S (2004) Nitrogen fixation by red clover as related to the supply of cobalt and molybdenum from some Norwegian soils. Acta Agric Scand Sect B 54:97–101. https://doi.org/10.1080/09064710410024408

    Article  CAS  Google Scholar 

  27. Arshiya A, Ajmat J (2020) Role of cobalt in plants: its stress and alleviation. In: Naeem M, Ansari A, Gill S (eds) Contaminants in agriculture. Springer, Cham

    Google Scholar 

  28. Yadav DV, Khanna SS (1988) Role of cobalt in nitrogen fixation: a review. Agric Rev 9:180–182

    Google Scholar 

  29. Mathur N, Singh J, Bohra A, Vyas A (2006) Effect of soil compaction potassium and cobalt on growth and yield of Moth Bean. Int J Soil Sci 1:269–271. https://doi.org/10.3923/ijss.2006.269.271

    Article  CAS  Google Scholar 

  30. Balai CM, Majumdar SP, Kumawat BL (2005) Effect of soil compaction, potassium and cobalt on growth and yield of cowpea. Indian J Pulses Res 18(1):38–39

    Google Scholar 

  31. Younis M (2007) Responses of Lablab purpureus rhizobium symbiosis to heavy metals in pot and field experiments. World J Agric Sci 3(1):111–122

    Google Scholar 

  32. Abdel Wahab AM, Abd-Alla MH, El-Enany AE (1996) Stimulation of nodulation, nitrogen fixation and plant growth of Faba bean by cobalt and copper additions. In: Rodriguez-Barrueco C (ed) Fertilizers and environment. Springer, Dordrecht, p 66. https://doi.org/10.1007/978-94-009-1586-2-23

    Chapter  Google Scholar 

  33. Hala K (2007) Effect of cobalt fertilizer on growth, yield and nutrients status of Faba bean (Vicia faba L.) plants. J App Sci Res 3(9):867–872

    CAS  Google Scholar 

  34. Yadav DV, Khanna SS (2002) Role of cobalt in nitrogen fixation -a review. Agricultural-Reviews 9:180–182

    Google Scholar 

  35. Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th edn. Kluwer Academic Publishers, Dordrecht, p 849. https://doi.org/10.1007/978-94-010-1009-2

    Book  Google Scholar 

  36. Abd El-Moez MR, Gad N (2002) Effect of organic cotton compost and cobalt application on cowpea plants growth and mineral composition. Egypt J Appl Sci 17:426–440

    Google Scholar 

  37. Khan MR, Khan MM (2010) Effect of varying concentration of nickel and cobalt on the plant growth and yield of chickpea. Aust J Basic Appl Sci 4:1036–1046

    CAS  Google Scholar 

  38. Gad N, Mohammed AM, Bekbayeva LK (2013) Response of cowpea (Vigna Anguiculata) to cobalt nutrition. Middle East J Sci Res 14:177–184. https://doi.org/10.5829/idosi.mejsr.2013.14.2.2008

    Article  CAS  Google Scholar 

  39. Jain V, Nainawatee H (2000) Cobalt reduces nitrate inhibition of nodulation in mung bean (Vigna radiata). Biol Fertil Soils 31:522–524. https://doi.org/10.1007/s003740000203

    Article  CAS  Google Scholar 

  40. Basu M, Bhadoria PBS, Maha Patra SC (2006) Influence of microbial culture in combination with micronutrient in improving the groundnut productivity under alluvial soil of India. Acta Agric Slov 87:435–444

    Google Scholar 

  41. Almeida MG, Silveira CM, Guigliarelli B, Bertrand P, Moura JJ (2007) A needle in a haystack the active site of the membrane-bound complex cytochrome c nitrite reductase. FEBS Lett 581:284–288. https://doi.org/10.1016/j.febslet.2006.12.023

    Article  CAS  PubMed  Google Scholar 

  42. Singh PK, Singh AK (2010) Response of mung bean (Vigna radiata L. Wilczek) in relation to micronutrients content and yield as affected by sulfur and cobalt application. Environ Ecol 28(1B):564–568

    Google Scholar 

  43. Jana PK, Sounda G (1994) Effect of cobalt and Rhizobium on yield, oil content and nutrient concentration in irrigated summer groundnut (Arachis hypogaea L.). Indian J Agric Sci 64:630–632

    CAS  Google Scholar 

  44. Jayakumar K, Abdul Jaleel C, Azooz MM, Vijayarengan P, Gomathinayagam M, Panneerselvam R (2009) Effect of different concentrations of cobalt on morphological parameters and yield components of soybean. Glob J Mol Sci 4(1):10–14

    CAS  Google Scholar 

  45. Outten FW, Outten CE, Halloran T (2000) Metallo regulatory systems at the interface between bacterial metal homeostasis and resistance. In: Storz G, Hengge AR (eds) Bacterial stress responses. ASM Press, Washington, pp 29–42

    Google Scholar 

  46. Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64(6):991–997. https://doi.org/10.1016/j.chemosphere.2005.12.057

    Article  CAS  PubMed  Google Scholar 

  47. Wani PA, Khan MS, Zaidi A (2008) Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55(1):33–42. https://doi.org/10.1007/s00244-007-9097-y

    Article  CAS  PubMed  Google Scholar 

  48. Nandakumar PBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:232–1238. https://doi.org/10.1021/es00005a014

    Article  Google Scholar 

  49. McIntyre T (2003) Phytoremediation of heavy metals from soils. In: Schepet T, Tsao DT (eds) Advances in biochemical engineering/biotechnology phytoremediation, vol 78. Springer, Berlin, pp 97–123. https://doi.org/10.1007/3-540-45991-x-4

    Chapter  Google Scholar 

  50. Hornik M, Pipsika M, Vrtoch L, Augustin J, Lesny J (2005) Bioaccumulation of Cs-137 and Co-60 by Helianthus annus. Nukleonika 50:49–521

    Google Scholar 

Download references

Acknowledgements

E.P is thankful to University Grants Commission (UGC), New Delhi for financial assistance towards Post-Doctoral Fellowship (PDF) under grant No. F./31-1/2017/PDFSS-2017-18-AND-14375. Thanks to the Department of Botany, ANU for necessary facilities to carry out this work.

Funding

AAS facility of the ANU and Post-Doctoral Fellowship (PDF) under Grant no. F./31-1/2017/PDFSS-2017-18-AND-14375 is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Dr. PE: Formal analysis, Data curation, Writing—original draft, Investigation, editing, Methodology. Dr. AJAM: Formal analysis, Data curation, Statistical analysis, Review. Dr. URV: review & editing, Methodology. Prof. VRSGD: Review & editing, Data curation, Conceptualization. Prof. VMK: Methodology, Conceptualization, Data curation, work administration and Supervision.

Corresponding author

Correspondence to Prabhavati Edulamudi.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Ethical Approval

This study does not describe any experimental work related to humans.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edulamudi, P., Antony Masilamani, A.J., Vanga, U.R. et al. Biosorption and Symbiotic Potential of Horse Gram Rhizobia in Soils Contaminated with Cobalt. Curr Microbiol 80, 174 (2023). https://doi.org/10.1007/s00284-023-03278-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03278-0

Navigation