Skip to main content
Log in

Euphorbia helioscopia a Putative Plant Reservoir of Pathogenic Curtobacterium flaccumfaciens

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The endophyte EHF3 strain was isolated in Algeria from an Euphorbia helioscopia plant growing in a fallow field. The strain was characterized by biochemical and physiological tests and assayed for the production of secondary metabolites involved in biocontrol, for plant growth promotion ability and for pathogenicity. The strain was identified by BIOLOG test as Curtobacterium flaccumfaciens. Biochemical and physiological characterization revealed that the strain was able to secrete protease, caseinase and amylase enzymes, to grow up to 37 °C and at pH values 5 to 9. C. flaccumfaciens EHF3 strain was incapable of solubilizing phosphorus and to produce IAA, HCN siderophores and phenazine compounds. The strain showed a moderate swimming and swarming motility and produced biofilm. EHF3 strain was positive at the hypersensitivity test on tobacco plants and induced symptoms on three varieties of bean resembling to those of the bacterial wilt disease induced by C. flaccumfaciens pv. flaccumfaciens. The preliminary data reported in this study, regarding the detection of a pathogenic C. flaccumfaciens strain, as endophyte of a E. helioscopia plant, highlight the role of non-host plants as reservoir of this bacterial pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Krimi Z, Alim D, Djellout H, Tafifet TL, Mohamed-Mahmoud F, Raio A (2016) Bacterial endophytes of weeds are effective biocontrol agents of Agrobacterium spp., Pectobacterium spp., and promote growth of tomato plants. Phytopathol Med 55(2):184–196. https://doi.org/10.14601/Phytopathol_Mediterr-16602

  2. Osdaghi E, Taghavi SM, Calamai S, Biancalani C, Cerboneschi M, Tegli S, Harveson RM (2018) Phenotypic and molecular-phylogenetic analysis provide novel insights into the diversity of Curtobacterium flaccumfaciens. Phytopathol 108:1154–1164. https://doi.org/10.1094/PHYTO-12-17-0420-R

    Article  CAS  Google Scholar 

  3. Osdaghi E, Taghavi SM, Hamzehzarghani H, Fazliarab A, Harveson RM, Tegli S, Lamichhan JR (2018) Epiphytic Curtobacterium flaccumfaciens strains isolated from symptomless solanaceous vegetables are pathogenic on leguminous but not on solanaceous plants. Plant Pathol 67:388–398. https://doi.org/10.1111/ppa.12730

    Article  CAS  Google Scholar 

  4. Nascimento DM, Oliveira LR, Melo LL, Silva JC, Soman JM, Girotto KT, Eburneo PR, Ribeiro-Junior MR, Sartori MMP, Silva Junior TAF, Maringoni AC (2020) Survival of Curtobacterium flaccumfaciens pv. flaccumfaciens in weeds. Plant Pathol 69:1357–1367. https://doi.org/10.1111/ppa.13206

    Article  CAS  Google Scholar 

  5. Buck JD (1982) Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993. https://doi.org/10.1128/aem.44.4.992-993.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schaad NW, Jones JB, Chun W (2001) Laboratory guide for the identification of plant pathogenic bacteria. APS Press, St. Paul

    Google Scholar 

  7. Huang S, Sheng P, Zhang H (2012) Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Int J Mol Sci 13:2563–2577. https://doi.org/10.3390/ijms13032563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57:535–538. https://doi.org/10.1128/aem.57.2.535-538.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nautyial CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x

    Article  Google Scholar 

  10. Kloepper JW, Rodríguez-Kábana R, McInroy JA, Collins DJ (1991) Analysis of populations and physiological characterization of microorganisms in rhizospheres of plants with antagonistic properties to phytopathogenic nematodes. Plant Soil 136(1):95–102. https://doi.org/10.1007/BF02465224

    Article  Google Scholar 

  11. Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508. https://doi.org/10.1128/jb.170.8.3499-3508.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. https://doi.org/10.1016/0003-2697(87)90612-9

    Article  CAS  PubMed  Google Scholar 

  13. Deziel E, Comeau Y, Villemur R (2001) Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming and twitching motilities. J Bacteriol 183:1195–1204. https://doi.org/10.1128/JB.183.4.1195-1204.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 25:4876–4882. https://doi.org/10.1093/nar/25.24.4876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  16. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Nat Ac Sci (USA) 101:11030–11035. https://doi.org/10.1073/pnas.0404206101

    Article  CAS  Google Scholar 

  17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

    Article  PubMed  Google Scholar 

  19. Larsen H (1986) Halophilic and halotolerant microorganisms-an overview and historical perspective. FEMS Microbiol Rev 39:3–7

    Article  CAS  Google Scholar 

  20. Vimal SR, Vikas KP, Singh JS (2019) Plant growth promoting Curtobacterium albidum strain SRV4: an agriculturally important microbe to alleviate salinity stress in paddy plants. Ecol Indic 105:553–562. https://doi.org/10.1016/j.ecolind.2018.05.014

    Article  CAS  Google Scholar 

  21. Lacava PT, Li W, Araújo WL, Azevedo JL, Hartung JS (2007) The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus. J Microbiol 45(5):388–393

    CAS  PubMed  Google Scholar 

  22. Bulgari D, Minio A, Casati P, Quaglino F, Delledonne M, Bianco PA (2014) Curtobacterium sp. genome sequencing underlines plant growth promotion-related traits. Genome Announc 2(4):e00592-e614. https://doi.org/10.1128/genomeA.00592-14

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nascimento DM, Oliveira LR, Melo LL, Silva JC, Soman JM, Eburneo PR, Ribeiro-Junior MR, Sartori MMP, Silva Junior TAF, Maringoni AC (2021) Survival of Curtobacterium flaccumfaciens pv. flaccumfaciens in the phyllosphere and rhizosphere of crops. Eur J Plant Pathol 160(1):161–172. https://doi.org/10.1007/s10658-021-02232-9

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, ZK and AR; methodology ZK and AR; formal analysis, CZ; sample preparation, CZ, LT, HD and FMM; data analysis, writing, original draft preparation, review and editing, supervision, ZK and AR. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Aida Raio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

284_2023_3271_MOESM2_ESM.tif

Supplementary file2 Fig. S1 Phylogenetic tree showing relatedness between C. flaccumfaciens EHF3, Curtobacterium spp. and Rathayibacter tritici as obtained by Neighbor-Joining analysis [15] (TIF 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krimi, Z., Ziouche, C., Tafifet, L. et al. Euphorbia helioscopia a Putative Plant Reservoir of Pathogenic Curtobacterium flaccumfaciens. Curr Microbiol 80, 154 (2023). https://doi.org/10.1007/s00284-023-03271-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03271-7

Navigation